Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 709, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853244

RESUMO

BACKGROUND: Pancreatic cancer, predominantly characterized by ductal adenocarcinoma (PDAC) accounts for 90% of cases and is the fourth leading cause of cancer-related deaths globally. Its incidence is notably increasing. This poor prognosis is primarily due to late-stage diagnosis (approximately 70% to 80% of patients are diagnosed at an advanced stage), aggressive tumor biology, and low sensitivity to chemotherapy. Consequently, it is crucial to identify and develop a simple, feasible and reproducible blood-based signature (i.e., combination of biomarkers) for early detection of PDAC. METHODS: The PANLIPSY study is a multi-center, non-interventional prospective clinical trial designed to achieve early detection of PDAC with high specificity and sensitivity, using a combinatorial approach in blood samples. These samples are collected from patients with resectable, borderline or locally advanced, and metastatic stage PDAC within the framework of the French Biological and Clinical Database for PDAC cohort (BACAP 2). All partners of the BACAP consortium are eligible to participate. The study will include 215 PDAC patients, plus 25 patients with benign pancreatic conditions from the PAncreatic Disease Cohort of TOuLouse (PACTOL) cohort, and 115 healthy controls, totaling 355 individuals. Circulating biomarkers will be collected in a total volume of 50 mL of blood, divided into one CellSave tube (10 mL), two CELL-FREE DNA BCT® preservative tubes (18 mL), and five EDTA tubes (22 mL in total). Samples preparation will adhere to the guidelines of the European Liquid Biopsy Society (ELBS). A unique feature of the study is the AI-based comparison of these complementary liquid biopsy biomarkers. Main end-points: i) to define a liquid biopsy signature that includes the most relevant circulating biomarkers, ii) to validate the multi-marker panel in an independent cohort of healthy controls and patients, with resectable PDAC, and iii) to establish a unique liquid biopsy biobank for PDAC study. DISCUSSION: The PANLIPSY study is a unique prospective non-interventional clinical trial that brings together liquid biopsy experts. The aim is to develop a biological signature for the early detection of PDAC based on AI-assisted detection of circulating biomarkers in blood samples (CTCs, ctDNA, EVs, circulating immune system, circulating cell-free nucleosomes, proteins, and microbiota). TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06128343 / NCT05824403. Registration dates: June 8,2023 and April 21, 2023.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Detecção Precoce de Câncer , Neoplasias Pancreáticas , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patologia , Detecção Precoce de Câncer/métodos , França , Biópsia Líquida/métodos , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Estudos Prospectivos
2.
Cancer Med ; 13(1): e6843, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38132919

RESUMO

BACKGROUND: For several years, the AXL tyrosine kinase receptor, a member of the Tyro3-Axl-Mer (TAM) family, has been considered a new strategic target in oncology. AXL overexpression is common in solid tumors and is associated with poor prognosis. In this context, the detection of a subset of circulating tumor cells (CTCs) that express AXL (AXL+ CTCs) could be clinically relevant. METHODS: Immunostaining was performed to assess AXL expression in human breast cancer cell lines. The optimal conditions were established using flow cytometry. Spiking experiments were carried out to optimize the parameters of the CellSearch® system detection test. CTC enumeration and AXL expression were evaluated in patients with metastatic breast cancer (mBC) before treatment initiation. RESULTS: An innovative AXL+ CTC detection assay to be used with the CellSearch® system was developed. In a prospective longitudinal clinical trial, blood samples from 60 patients with untreated mBC were analyzed to detect AXL+ CTCs with this new assay. CTCs were detected in 35/60 patients (58.3%) and AXL+ CTCs were identified in 7 of these 35 patients (11.7% of all patients). CONCLUSION: This newly established AXL+ CTC assay is a promising tool that can be used for liquid biopsy in future clinical trials to stratify and monitor patients with cancer receiving anti-AXL therapies.


Assuntos
Receptor Tirosina Quinase Axl , Neoplasias da Mama , Células Neoplásicas Circulantes , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Proteínas Proto-Oncogênicas/metabolismo , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Idoso , Biomarcadores Tumorais/metabolismo , Estudo de Prova de Conceito , Metástase Neoplásica , Estudos Prospectivos , Adulto
3.
Front Cell Dev Biol ; 11: 1291179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188020

RESUMO

Therapy resistance is a major challenge in colorectal cancer management. Epigenetic changes, such as DNA methylation, in tumor cells are involved in the development of acquired resistance during treatment. Here, we characterized the DNA methylation landscape of colon circulating tumor cells (CTCs) during cancer progression and therapy resistance development. To this aim, we used nine permanent CTC lines that were derived from peripheral blood samples of a patient with metastatic colon cancer collected before treatment initiation (CTC-MCC-41) and during treatment and cancer progression (CTC-MCC-41.4 and CTC-MCC-41.5 [A-G]). We analyzed the DNA methylome of these nine CTC lines using EPIC arrays and also assessed the association between DNA methylation and gene expression profiles. We confirmed DNA methylation and gene expression results by pyrosequencing and RT-qPCR, respectively. The global DNA methylation profiles were different in the pre-treatment CTC line and in CTC lines derived during therapy resistance development. These resistant CTC lines were characterized by a more hypomethylated profile compared with the pre-treatment CTC line. Most of the observed DNA methylation differences were localized at CpG-poor regions and some in CpG islands, shore regions and promoters. We identified a distinctive DNA methylation signature that clearly differentiated the pre-treatment CTC line from the others. Of note, the genes involved in this signature were associated with cancer-relevant pathways, including PI3K/AKT, MAPK, Wnt signaling and metabolism. We identified several epigenetically deregulated genes associated with therapy resistance in CTCs, such as AP2M1. Our results bring new knowledge on the epigenomic landscape of therapy-resistant CTCs, providing novel mechanisms of resistance as well as potential biomarkers and therapeutic targets for advanced CRC management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA