Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Nutr ; 11: 1258570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439925

RESUMO

Background: Long-term wolfberry intake as part of a healthy dietary pattern was recognized to have beneficial vascular outcomes. Characterization of the plasma lipidome may further provide comprehensive insights into pathways underlying these cardiovascular protective effects. Objective: We analyzed the plasma lipidome of subjects who adhered to a healthy dietary pattern either with or without wolfberry and investigated the associations between the plasma lipidomic profile and cardiovascular health-related indicators. Methods: In this 16-week, parallel design, randomized controlled trial, middle-aged and older adults (n = 41) were provided dietary counseling and assigned to either consume or not consume 15 g of wolfberry daily. At baseline and post-intervention, plasma lipidomics was assayed, and its relationships with classical CVD risk factors, vascular health, oxidant burden, carotenoids status, body composition, and anthropometry were examined. Results: From the plasma lipidome, 427 lipid species from 26 sub-classes were quantified. In the wolfberry and control groups, significant changes were prominent for 27 and 42 lipid species, respectively (P < 0.05 with > 0.2-fold change). Fold changes for seven lipid species were also markedly different between the two groups. Examining the relationships between the plasma lipidome and CVD-related risk factors, total cholesterol revealed a marked positive correlation with 13 ceramide species, while HDL-cholesterol which was notably increased with wolfberry consumption showed a positive correlation with 10 phosphatidylcholine species. Oxidant burden, as represented by plasma 8-isoprostanes, was also inversely associated with lipidomic triglycerides and ether-triglycerides (41 species) and directly associated with hexosylceramides (eight species) and sphingomyelins (six species). There were no differential associations with CVD risk detected between groups. Conclusion: Characteristic alterations to the plasma lipidome were observed with healthy dietary pattern adherence and wolfberry consumption. An examination of these fluctuations suggests potential biochemical mechanisms that may mediate the antioxidant and cardiovascular protective effects of healthy dietary pattern adherence and wolfberry intake. This study was registered at clinicaltrials.gov as NCT0353584.

2.
Exp Mol Med ; 56(5): 1043-1054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689090

RESUMO

Biomedical research on the brain has led to many discoveries and developments, such as understanding human consciousness and the mind and overcoming brain diseases. However, historical biomedical research on the brain has unique characteristics that differ from those of conventional biomedical research. For example, there are different scientific interpretations due to the high complexity of the brain and insufficient intercommunication between researchers of different disciplines owing to the limited conceptual and technical overlap of distinct backgrounds. Therefore, the development of biomedical research on the brain has been slower than that in other areas. Brain biomedical research has recently undergone a paradigm shift, and conducting patient-centered, large-scale brain biomedical research has become possible using emerging high-throughput analysis tools. Neuroimaging, multiomics, and artificial intelligence technology are the main drivers of this new approach, foreshadowing dramatic advances in translational research. In addition, emerging interdisciplinary cooperative studies provide insights into how unresolved questions in biomedicine can be addressed. This review presents the in-depth aspects of conventional biomedical research and discusses the future of biomedical research on the brain.


Assuntos
Encéfalo , Pesquisa Translacional Biomédica , Humanos , Encéfalo/fisiologia , Animais , Neuroimagem/métodos , Encefalopatias/patologia , Inteligência Artificial , Pesquisa Biomédica
3.
JCI Insight ; 9(8)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451736

RESUMO

Accumulation of sphingolipids, especially sphingosines, in the lysosomes is a key driver of several lysosomal storage diseases. The transport mechanism for sphingolipids from the lysosome remains unclear. Here, we identified SPNS1, which shares the highest homology to SPNS2, a sphingosine-1-phosphate (S1P) transporter, functions as a transporter for lysolipids from the lysosome. We generated Spns1-KO cells and mice and employed lipidomic and metabolomic approaches to reveal SPNS1 ligand identity. Global KO of Spns1 caused embryonic lethality between E12.5 and E13.5 and an accumulation of sphingosine, lysophosphatidylcholines (LPC), and lysophosphatidylethanolamines (LPE) in the fetal livers. Similarly, metabolomic analysis of livers from postnatal Spns1-KO mice presented an accumulation of sphingosines and lysoglycerophospholipids including LPC and LPE. Subsequently, biochemical assays showed that SPNS1 is required for LPC and sphingosine release from lysosomes. The accumulation of these lysolipids in the lysosomes of Spns1-KO mice affected liver functions and altered the PI3K/AKT signaling pathway. Furthermore, we identified 3 human siblings with a homozygous variant in the SPNS1 gene. These patients suffer from developmental delay, neurological impairment, intellectual disability, and cerebellar hypoplasia. These results reveal a critical role of SPNS1 as a promiscuous lysolipid transporter in the lysosomes and link its physiological functions with lysosomal storage diseases.


Assuntos
Modelos Animais de Doenças , Doenças por Armazenamento dos Lisossomos , Lisossomos , Camundongos Knockout , Animais , Feminino , Humanos , Masculino , Camundongos , Fígado/metabolismo , Lisofosfolipídeos/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
4.
Cardiovasc Res ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39086170

RESUMO

AIMS: Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC-autonomous S1P production, it is unclear if relative reductions in circulating S1P impact endothelial function. It is also unclear how EC S1PR1 insufficiency, whether induced by ligand deficiency or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS: We here fine-map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell type-specific and relative deficiencies in S1P production to define ligand source- and dose-dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries and high-endothelial venules (HEV). Similar zonation was observed for albumin extravasation in EC S1PR1 deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic EC, S1PR1 engagement was high in collecting vessels and lymph nodes and low in terminal capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signaling in lymphatics and HEV, hematopoietic cells provided ∼90% of plasma S1P and sustained signaling in resistance arteries and lung capillaries. S1PR1 signaling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age, but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSIONS: This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.

5.
Cell Res ; 34(3): 245-257, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302740

RESUMO

Mutations in the orphan transporter MFSD7c (also known as Flvcr2), are linked to Fowler syndrome. Here, we used Mfsd7c knockout (Mfsd7c-/-) mice and cell-based assays to reveal that MFSD7c is a choline transporter at the blood-brain barrier (BBB). We performed comprehensive metabolomics analysis and detected differential changes of metabolites in the brains and livers of Mfsd7c-/-embryos. Particularly, we found that choline-related metabolites were altered in the brains but not in the livers of Mfsd7c-/- embryos. Thus, we hypothesized that MFSD7c regulates the level of choline in the brain. Indeed, expression of human MFSD7c in cells significantly increased choline uptake. Interestingly, we showed that choline uptake by MFSD7c is greatly increased by choline-metabolizing enzymes, leading us to demonstrate that MFSD7c is a facilitative transporter of choline. Furthermore, single-cell patch clamp analysis showed that the import of choline by MFSD7c is electrogenic. Choline transport function of MFSD7c was shown to be conserved in vertebrates, but not in yeasts. We demonstrated that human MFSD7c is a functional ortholog of HNM1, the yeast choline importer. We also showed that several missense mutations identified in patients exhibiting Fowler syndrome had abolished or reduced choline transport activity. Mice lacking Mfsd7c in endothelial cells of the central nervous system suppressed the import of exogenous choline from blood but unexpectedly had increased choline levels in the brain. Stable-isotope tracing study revealed that MFSD7c was required for exporting choline derived from lysophosphatidylcholine in the brain. Collectively, our work identifies MFSD7c as a choline exporter at the BBB and provides a foundation for future work to reveal the disease mechanisms of Fowler syndrome.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Síndrome do Ovário Policístico , Transtornos Urinários , Animais , Humanos , Camundongos , Transporte Biológico , Encéfalo , Colina
6.
Nat Commun ; 15(1): 4455, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796479

RESUMO

Lipids are the most abundant but poorly explored components of the human brain. Here, we present a lipidome map of the human brain comprising 75 regions, including 52 neocortical ones. The lipidome composition varies greatly among the brain regions, affecting 93% of the 419 analyzed lipids. These differences reflect the brain's structural characteristics, such as myelin content (345 lipids) and cell type composition (353 lipids), but also functional traits: functional connectivity (76 lipids) and information processing hierarchy (60 lipids). Combining lipid composition and mRNA expression data further enhances functional connectivity association. Biochemically, lipids linked with structural and functional brain features display distinct lipid class distribution, unsaturation extent, and prevalence of omega-3 and omega-6 fatty acid residues. We verified our conclusions by parallel analysis of three adult macaque brains, targeted analysis of 216 lipids, mass spectrometry imaging, and lipidome assessment of sorted murine neurons.


Assuntos
Encéfalo , Lipidômica , Lipídeos , Humanos , Animais , Encéfalo/metabolismo , Camundongos , Adulto , Lipídeos/química , Lipídeos/análise , Masculino , Metabolismo dos Lipídeos , Macaca , Neurônios/metabolismo , Feminino , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Bainha de Mielina/metabolismo , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA