Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(16): E3178-E3187, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373537

RESUMO

Aldehyde oxidase (AOX) is a metabolic enzyme catalyzing the oxidation of aldehyde and aza-aromatic compounds and the hydrolysis of amides, moieties frequently shared by the majority of drugs. Despite its key role in human metabolism, to date only fragmentary information about the chemical features responsible for AOX susceptibility are reported and only "very local" structure-metabolism relationships based on a small number of similar compounds have been developed. This study reports a more comprehensive coverage of the chemical space of structures with a high risk of AOX phase I metabolism in humans. More than 270 compounds were studied to identify the site of metabolism and the metabolite(s). Both electronic [supported by density functional theory (DFT) calculations] and exposure effects were considered when rationalizing the structure-metabolism relationship.


Assuntos
Aldeído Oxidase/química , Aldeído Oxidase/metabolismo , Amidas/química , Compostos Aza/química , Bases de Dados de Produtos Farmacêuticos , Hidrocarbonetos Aromáticos/química , Biocatálise , Humanos , Oxirredução , Conformação Proteica , Especificidade por Substrato
2.
Planta Med ; 83(8): 718-726, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28192813

RESUMO

Natural products are generally ingested as part of traditional herbal decoctions or in the current diet. However, in natural product research, the bioavailability of secondary metabolites is often poorly investigated. In this work, a systematic study was carried out in order to highlight the physicochemical parameters that mainly influence the passive intestinal absorption of natural products. For this, a representative set of natural products including alkaloids, coumarins, flavonoid aglycones and glycosides, and carboxylic acids was selected and their physicochemical properties were predicted using relevant Volsurf+ descriptors. The chemical space obtained with this unbiased method was then correlated with experimental passive intestinal permeability data, which highlighted the main influence of lipophilicity, global hydrophilicity, size, and the ionisation state on passive intestinal absorption of natural products. Since the pH range encountered in the intestine is wide, the influence of the ionisation was investigated deeper experimentally. The ionisation state of weakly ionisable natural products, such as flavonoid aglycones, alkaloids, and carboxylic acids, was found to prevent the passive intestinal absorption of such natural products completely. In addition, the impact of solubility issues on passive permeability results was evaluated in cases of poorly water-soluble natural products, such as flavonoid aglycones and coumarins. The biomimetic fasted state simulated fluid-version 2 was found to improve the apparent solubility of such poorly soluble natural products without influencing their permeability behaviours. The use of such a solubilising buffer was found to be well adapted to the hexadecane membrane-parallel artificial membrane permeability assay and can circumvent the solubility issues encountered with poorly soluble natural products in such an assay.


Assuntos
Produtos Biológicos/metabolismo , Absorção Intestinal , Intestino Delgado/metabolismo , Compostos Fitoquímicos/metabolismo , Metabolismo Secundário , Células CACO-2 , Humanos , Membranas Artificiais , Permeabilidade , Solubilidade
3.
J Chem Inf Model ; 53(6): 1436-46, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23692521

RESUMO

Drug-induced phospholipidosis (PLD) is characterized by accumulation of phospholipids, the inducing drugs and lamellar inclusion bodies in the lysosomes of affected tissues. These side effects must be considered as early as possible during drug discovery, and, in fact, numerous in silico models designed to predict PLD have been published. However, the quality of any in silico model cannot be better than the quality of the experimental data set used to build it. The present paper reports an overview of the difficulties and errors encountered in the generation of databases used for the published PLD models. A new database of 466 compounds was constructed from seven literature sources, containing only publicly available compounds. A comparison of the PLD assignations in selected databases proved useful in revealing some inconsistencies and raised doubts about the previously assigned PLD+ and PLD- classifications for some chemicals. Finally, a Partial Least Squares Discriminant Analysis (PLS-DA) approach was also applied, revealing further anomalies and clearly showing that metabolism as well as data quality must be taken into account when generating accurate methods for predicting the likelihood that a compound will induce PLD. A new curated database of 331 compounds is proposed.


Assuntos
Lisossomos/metabolismo , Preparações Farmacêuticas/metabolismo , Fosfolipídeos/metabolismo , Simulação por Computador , Humanos , Modelos Biológicos , Preparações Farmacêuticas/química
4.
Colloids Surf B Biointerfaces ; 136: 175-84, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387069

RESUMO

Drug-induced phospholipidosis indicates an accumulation of phospholipids within lysosomes, which can occur during therapeutic treatment. Whether or not phospholipidosis represents a toxicological phenomenon is still under investigation, and in the last decade the Food and Drug Administration has been raising concerns about the possible consequences of this adverse event. Cationic amphiphilic drugs represent the majority of phospholipidosis inducers, followed by aminoglycoside and macrolide antibiotics. Although the mechanism of phospholipidosis induction is still uncertain, the interaction of drugs with phospholipids in the lysosomal membrane represents a key step. Therefore, the study of the drug/lipid complex formation will provide valuable insight into the causation of phospholipidosis at the molecular level and to identify the potential phospholipidosis risk associated with drug. In this study, we investigated the insertion profile of eleven drugs with known phospholipidosis effect into preformed Langmuir monolayers of various lipid compositions, to evaluate for the first time the drug/lipid interaction for phospholipidosis inducers and non-inducers in a dynamic approach. We found that the addition of dipalmitoylphosphatidylserine (DPPS) to dipalmitoylphosphatidylcholine (DPPC) to form the lipid monolayer allowed a clear identification of the phospholipidosis effect of the selected drugs based on the variation of the surface pressure, not only for cationic amphiphilic drugs but also for the aminoglycoside and the macrolide antiobiotics tested. Compared to a standard PAMPA assay, the new method appears to be more effective for the study of poorly soluble drugs.


Assuntos
Lipidoses/induzido quimicamente , Preparações Farmacêuticas , Fosfolipídeos/metabolismo , Adsorção , Lipidoses/metabolismo , Membranas Artificiais , Permeabilidade , Fosfolipídeos/química , Tensão Superficial , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA