Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983016

RESUMO

In the last decade, cholesterol level has been implicated in several types of cancer, including breast cancer. In the current study, we aimed to investigate the condition of lipid depletion, hypocholesterolemia or hypercholesterolemia reproduced in vitro to analyze the response of different human breast cancer cells. Thus, MCF7 as the luminal A model, MB453 as the HER2 model and MB231 as the triple-negative model were used. No effect on cell growth and viability was detected in MB453 and MB231 cells. In MCF7 cells, hypocholesterolemia (1) reduced cell growth, and Ki67 expression; (2) increased ER/PgR expression; (3) stimulated the 3-Hydroxy-3-Methylglutaryl-CoA reductase and neutral sphingomyelinase and; (4) stimulated the expression of CDKN1A gene coding cyclin-dependent kinase inhibitor 1A protein, GADD45A coding growth arrest and DNA-damage-inducible alpha protein and, PTEN gene coding phosphatase and tensin homolog. All these effects were exacerbated by the lipid-depleted condition and reversed by the hypercholesterolemic condition. The relationship between cholesterol level and sphingomyelin metabolism was demonstrated. In summary, our data suggest that cholesterol levels should be controlled in luminal A breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células MCF-7 , Linhagem Celular Tumoral , Colesterol , Lipídeos
2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674467

RESUMO

This study illustrates the sensing and wound healing properties of silk fibroin in combination with peptide patterns, with an emphasis on the printability of multilayered grids, and envisions possible applications of these next-generation silk-based materials. Functionalized silk fibers covalently linked to an arginine-glycine-aspartic acid (RGD) peptide create a platform for preparing a biomaterial ink for 3D printing of grid-like piezoresistors with wound-healing and sensing properties. The culture medium obtained from 3D-printed silk fibroin enriched with RGD peptide improves cell adhesion, accelerating skin repair. Specifically, RGD peptide-modified silk fibroin demonstrated biocompatibility, enhanced cell adhesion, and higher wound closure rates at lower concentration than the neat peptide. It was also shown that the printing of peptide-modified silk fibroin produces a piezoresistive transducer that is the active component of a sensor based on a Schottky diode harmonic transponder encoding information about pressure. We discovered that such biomaterial ink printed in a multilayered grid can be used as a humidity sensor. Furthermore, humidity activates a transition between low and high conductivity states in this medium that is retained unless a negative voltage is applied, paving the way for utilization in non-volatile organic memory devices. Globally, these results pave the way for promising applications, such as monitoring parameters such as human wound care and being integrated in bio-implantable processors.


Assuntos
Fibroínas , Materiais Inteligentes , Humanos , Seda/química , Fibroínas/química , Tinta , Materiais Biocompatíveis/química , Cicatrização , Peptídeos , Impressão Tridimensional
3.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139092

RESUMO

The role of sphingomyelin metabolism and vitamin C in cancer has been widely described with conflicting results ranging from a total absence of effect to possible preventive and/or protective effects. The aim of this study was to establish the possible involvement of sphingomyelin metabolism in the changes induced by vitamin C in breast cancer cells. The MCF7 cell line reproducing luminal A breast cancer and the MDA-MB-231 cell line reproducing triple-negative breast cancer were used. Cell phenotype was tested by estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 expression, and proliferation index percentage. Sphingomyelin was localized by an EGFP-NT-Lys fluorescent probe. Sphingomyelin metabolism was analyzed by RT-PCR, Western blotting and UFLC-MS/MS. The results showed that a high dose of vitamin C produced reduced cell viability, modulated cell cycle related genes, and changed the cell phenotype with estrogen receptor downregulation in MCF7 cell. In these cells, the catabolism of sphingomyelin was promoted with a large increase in ceramide content. No changes in viability and molecular expression were observed in MB231 cells. In conclusion, a high dose of vitamin C induces changes in the luminal A cell line involving sphingomyelin metabolism.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/metabolismo , Esfingomielinas , Ácido Ascórbico/farmacologia , Espectrometria de Massas em Tandem , Vitaminas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
4.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806470

RESUMO

The relationship between cholesterol and cancer has been widely demonstrated. Clinical studies have shown changes in blood cholesterol levels in cancer patients. In parallel, basic research studies have shown that cholesterol is involved in the mechanisms of onset and progression of the disease. On the other hand, anorexic patients have high cholesterol levels and a high susceptibility to cancer. In this review, we first present a brief background on the relations among nutrition, eating disorders and cancer. Using several notable examples, we then illustrate the changes in cholesterol in cancer and in anorexia nervosa, providing evidence for their important relationship. Finally, we show a new possible link between cholesterol disorder in cancer and in anorexia nervosa.


Assuntos
Anorexia Nervosa , Transtornos da Alimentação e da Ingestão de Alimentos , Hipercolesterolemia , Neoplasias , Anorexia Nervosa/complicações , Humanos , Hipercolesterolemia/complicações , Neoplasias/complicações
5.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163332

RESUMO

Vitamin D3, known to regulate bone homeostasis, has recently been shown to have many pleiotropic effects in different tissues and organs due to the presence of its receptor in a wide range of cells. Our previous study demonstrated that vitamin D3 was able to increase the wound healing respect to the control sample, 24 h after cutting, without however leading to a complete repair. The aim of the study was to combine vitamin D3 with silver nanoparticles to possibly enable a faster reparative effect. The results showed that this association was capable of inducing a complete wound healing only after 18 h. Moreover, a treatment of vitamin D3 + silver nanoparticles yielded a small percentage of keratinocytes vimentin-positive, suggesting the possibility that the treatment was responsible for epithelial to mesenchymal transition of the cells, facilitating wound healing repair. Since vitamin D3 acts via sphingolipid metabolism, we studied the expression of gene encoding for the metabolic enzymes and protein level. We found an increase in neutral sphingomyelinase without involvement of neutral ceramidase or sphingosine kinase2. In support, an increase in ceramide level was identified by Ultrafast Liquid Chromatography-Tandem Mass Spectrometry, suggesting a possible involvement of ceramides in wound healing process.


Assuntos
Colecalciferol , Nanopartículas Metálicas , Sobrevivência Celular , Ceramidas/metabolismo , Colecalciferol/metabolismo , Colecalciferol/farmacologia , Transição Epitelial-Mesenquimal , Prata/farmacologia
6.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555817

RESUMO

ω-3 Polyunsaturated fatty acids (PUFAs) have been found to exert many actions, including neuroprotective effects. In this regard, the exact molecular mechanisms are not well understood. Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. Emerging evidence supports the hypothesis that PD is the result of complex interactions between genetic abnormalities, environmental toxins, mitochondrial dysfunction, and other cellular processes, such as DNA methylation. In this context, BDNF (brain-derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) have a pivotal role because they are both involved in neuron differentiation, survival, and synaptogenesis. In this study, we aimed to elucidate the potential role of two PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and their effects on BDNF and GDNF expression in the SH-SY5Y cell line. Cell viability was determined using the MTT assay, and flow cytometry analysis was used to verify the level of apoptosis. Transmission electron microscopy was performed to observe the cell ultrastructure and mitochondria morphology. BDNF and GDNF protein levels and mRNA were assayed by Western blotting and RT-PCR, respectively. Finally, methylated and hydroxymethylated DNA immunoprecipitation were performed in the BDNF and GDNF promoter regions. EPA, but not DHA, is able (i) to reduce the neurotoxic effect of neurotoxin 6-hydroxydopamine (6-OHDA) in vitro, (ii) to re-establish mitochondrial function, and (iii) to increase BNDF and GDNF expression via epigenetic mechanisms.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Ácidos Graxos Insaturados/farmacologia , Doença de Parkinson/genética , Apoptose , Epigênese Genética
7.
Eat Weight Disord ; 27(5): 1869-1880, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34822136

RESUMO

PURPOSE: The aim of this study was to increase knowledge of genes associated with anorexia nervosa (AN) and their diagnostic offer, using a next generation sequencing (NGS) panel for the identification of genetic variants. The rationale underlying this test is that we first analyze the genes associated with syndromic forms of AN, then genes that were found to carry rare variants in AN patients who had undergone segregation analysis, and finally candidate genes intervening in the same molecular pathways or identified by GWAS or in mouse models. METHODS: We developed an NGS gene panel and used it to screen 68 Italian AN patients (63 females, 5 males). The panel included 162 genes. Family segregation study was conducted on available relatives of probands who reported significant genetic variants. RESULTS: In our analysis, we found potentially deleterious variants in 2 genes (PDE11A and SLC25A13) associated with syndromic forms of anorexia and predicted deleterious variants in the following 12 genes: CD36, CACNA1C, DRD4, EPHX2, ESR1, GRIN2A, GRIN3B, LRP2, NPY4R, PTGS2, PTPN22 and SGPP2. Furthermore, by Sanger sequencing of the promoter region of NNAT, we confirmed the involvement of this gene in the pathogenesis of AN. Family segregation studies further strengthened the possible causative role of CACNA1C, DRD4, GRIN2A, PTGS2, SGPP2, SLC25A13 and NNAT genes in AN etiology. CONCLUSION: The major finding of our study is the confirmation of the involvement of the NNAT gene in the pathogenesis of AN; furthermore, this study suggests that NGS-based testing can play an important role in the diagnostic evaluation of AN, excluding syndromic forms and increasing knowledge of the genetic etiology of AN. LEVEL OF EVIDENCE: Level I, experimental study.


Assuntos
Anorexia Nervosa , Sequenciamento de Nucleotídeos em Larga Escala , 3',5'-GMP Cíclico Fosfodiesterases/genética , Animais , Anorexia Nervosa/diagnóstico , Anorexia Nervosa/genética , Ciclo-Oxigenase 2/genética , Feminino , Humanos , Masculino , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética
8.
Int J Mol Sci ; 21(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384654

RESUMO

Sphingomyelins (SMs) are a class of relevant bioactive molecules that act as key modulators of different cellular processes, such as growth arrest, exosome formation, and the inflammatory response influenced by many environmental conditions, leading to pyroptosis, a form of programmed cell death due to Caspase-1 involvement. To study liver pyroptosis and hepatic SM metabolism via both lysosomal acid SMase (aSMase) and endoplasmic reticulum/nucleus neutral SMase (nSMase) during the exposure of mice to radiation and to ascertain if this process can be modulated by protective molecules, we used an experimental design (previously used by us) to evaluate the effects of both ionizing radiation and a specific protective molecule (rMnSOD) in the brain in collaboration with the Joint Institute for Nuclear Research, Dubna (Russia). As shown by the Caspase-1 immunostaining of the liver sections, the radiation resulted in the loss of the normal cell structure alongside a progressive and dose-dependent increase of the labelling, treatment, and pretreatment with rMnSOD, which had a significant protective effect on the livers. SM metabolic analyses, performed on aSMase and nSMase gene expression, as well as protein content and activity, proved that rMnSOD was able to significantly reduce radiation-induced damage by playing both a protective role via aSMase and a preventive role via nSMase.


Assuntos
Fígado/metabolismo , Piroptose , Lesões por Radiação/metabolismo , Protetores contra Radiação/farmacologia , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Animais , Caspase 1/metabolismo , Feminino , Fígado/efeitos dos fármacos , Fígado/efeitos da radiação , Camundongos , Lesões por Radiação/tratamento farmacológico , Protetores contra Radiação/uso terapêutico
9.
Molecules ; 25(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941100

RESUMO

The onion non-edible outside layers represent a widely available waste material deriving from its processing and consumption. As onion is a vegetable showing many beneficial properties for human health, a study aiming to evaluate the use of extract deriving from the non-edible outside layers was planned. An eco-friendly extraction method was optimized using a hydroalcoholic solution as solvent. The obtained extract was deeply characterized by in vitro methods and then formulated in autoadhesive, biocompatible and pain-free hydrogel polymeric films. The extract, very soluble in water, showed antioxidant, radical scavenging, antibacterial and anti-inflammatory activities, suggesting a potential dermal application for wounds treatment. In vitro studies showed a sustained release of the extract from the hydrogel polymeric film suitable to reach concentrations necessary for both antibacterial and anti-inflammatory activities. Test performed on human keratinocytes showed that the formulation is safe suggesting that the projected formulation could be a valuable tool for wound treatment.


Assuntos
Antibacterianos , Anti-Inflamatórios , Membranas Artificiais , Cebolas/química , Extratos Vegetais , Pele , Adesivos Teciduais , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Pele/lesões , Pele/metabolismo , Pele/microbiologia , Suínos , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia
10.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599866

RESUMO

The fatty acid composition of human breast milk is relevant for the energy, immunity and eicosanoid production in infants. Additionally, the antioxidant properties of foods are essential for human health. Therefore, in the present study we aimed to investigate the relationship between maternal diet and fatty acids composition as well as the antioxidant potential of breast milk from donors to human milk bank of Perugia's hospital, Italy. Results were compared with infant formulas. We observed increased levels of total fatty acids and, in particular, saturated and monounsaturated fatty acids in milk from mothers fed on a vegetable and fruit-rich diet compared with a Mediterranean diet. In the same milk, a reduced antioxidant potential was found. All infant formulas resulted in richer total fatty acid content than human breast milk. Only some formulas were qualitatively similar to breast milk. Of note, the antioxidant potential of the formulas was higher or lower than the human milk with the exception of one sample. The antioxidant potential of four formulas was very high. Dietary supplementation with antioxidants has been shown to have a teratogenic effect and to increase the formation of metastases in adult. There are no data on the effects of excess antioxidants in the infants, but the possibility that they can be harmful cannot be excluded.


Assuntos
Antioxidantes/análise , Ácidos Graxos/análise , Fórmulas Infantis/química , Fenômenos Fisiológicos da Nutrição Materna , Leite Humano/química , Adulto , Dieta Mediterrânea , Ácidos Graxos Ômega-3/análise , Feminino , Humanos , Lactente , Fórmulas Infantis/análise , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido Prematuro , Gravidez
11.
Artigo em Inglês | MEDLINE | ID: mdl-30928412

RESUMO

Both sphingomyelinase and Toll-Like Receptor 4 (TLR4) are implicated in neurodegenerative diseases. However, the relationship between the two molecules remains unclear. In this study, using WT and TLR4-deficient mice, treated or not with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we aimed to investigate the relation between TLR4 and neutral sphingomyelinase (nSMase) in the midbrain. We found that the lack of TLR4 caused increase in nSMase protein expression and enzyme activity in the midbrain, as well as a marked delocalization from the cell membranes. This provoked a decrease in sphingomyelin (SM) species and an increase in ceramide levels. We found that exposure of TLR4-deficient mice to MPTP reduces unsaturated SM species by increasing saturated/unsaturated SM ratio. Saturated fatty acid make SM more rigid and could contribute to reducing neural plasticity. In this study we showed that the absence of TLR4 also induced reduction of both heavy neurofilaments and glial fibrillary acidic protein (GFAP) and mice exhibited higher sensitivity to MPTP administration. We speculated about the possible association between nSMase-TLR4 complex and MPTP midbrain damage. Taken together, our findings provide for the first time indications about the role of TLR4 in change of SM metabolism in MPTP neurotoxicity.


Assuntos
Intoxicação por MPTP/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Receptor 4 Toll-Like/deficiência , Animais , Intoxicação por MPTP/enzimologia , Intoxicação por MPTP/patologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Esfingomielinas/metabolismo
12.
Int J Mol Sci ; 20(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349547

RESUMO

The skin has many functions, such as providing a barrier against injury and pathogens, protecting from ultraviolet light, and regulating body temperature. Mechanical causes and many different pathologies can lead to skin damage. Therefore, it is important for the skin to be always adaptable and renewable and for cells to undergo proliferation. Here, we demonstrate that 1α, 25-dihydroxyvitamin D3 (VD3) stimulates keratinocyte proliferation, leading to wound closure in a simulation model of injury. Functionally, our results show that VD3 acts by stimulating cyclin D1, a cyclin that promotes the G1/S transition of the cell cycle. The study on the mechanism underlying cyclin D1 expression upon VD3 stimulation clearly demonstrates a key role of neutral sphingomyelinase. The enzyme, whose gene and protein expression is stimulated by VD3, is itself able to induce effects on cyclin D1 and wound healing similar to those obtained with VD3. These results could be very useful in the future to better understand wound mechanisms and improve therapeutic interventions.


Assuntos
Calcitriol/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos
13.
Int J Mol Sci ; 20(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086057

RESUMO

Sphingomyelinase (SMase) is responsible for the breakdown of sphingomyelin (SM) with production of ceramide. The absence of acid sphingomyelinase (aSMase) causes abnormal synapse formation in Niemann-Pick type A (NPA) disease. Because high levels of ceramide in the NPA brain were demonstrated, the involvement of other SMases were supposed. In the present study we focused the attention on the neurogenic niches in the hippocampal gyrus dentatus (GD), a brain structure essential for forming cohesive memory. We demonstrated for the first time the increase of (Sex determining region Y)-box 2 (SOX2), and the down-regulation of glial fibrillary acidic protein (GFAP) NPA mice GD. Moreover, we found that the expression of Toll like receptors (TLRs), was increased in NPA mice, particularly TLR2, TLR7, TLR8 and TLR9 members. Although no significant change in neutral sphingomyelinase (nSMase) gene expression was detected in the NPA mice hippocampus of, protein levels were enhanced, probably because of the slower protein degradation rate in this area. Many studies demonstrated that vitamin D receptor (VDR) is expressed in the hippocampus GD. Unexpectedly, we showed that NPA mice exhibited VDR gene and protein expression up-regulation. In summary, our study suggests a relation between hippocampal cell differentiation defect, nSMase and VDR increase in NPA mice.


Assuntos
Neurônios/metabolismo , Doença de Niemann-Pick Tipo A/metabolismo , Receptores de Calcitriol/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Giro Denteado/metabolismo , Camundongos Endogâmicos C57BL , Receptor 2 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo
14.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489901

RESUMO

Emerging literature implicates acid sphingomyelinase in tumor sensitivity/resistance to anticancer treatments. Gentamicin is a drug commonly used as an antimicrobial but its serendipity effects have been shown. Even though many evidences on the role of gentamicin in cancer have been reported, its mechanism of action is poorly understood. Here, we explored acid sphingomyelinase as a possible new target of gentamicin in cancer. Since gastric cancer is one of the most common cancers and represents the second cause of death in the world, we performed the study in NCI-N87 gastric cancer cell line. The effect of the drug resulted in the inhibition of cell proliferation, including a reduction of cell number and viability, in the decrease of MIB-1 proliferative index as well as in the upregulation of cyclin-dependent kinase inhibitor 1A and 1B (CDKN1A and CDKN1B), and growth arrest and DNA-damage 45A (GADD45A) genes. The cytotoxicity was apoptotic as shown by FACS analysis. Additionally, gentamicin reduced HER2 protein, indicating a minor tumor aggressiveness. To further define the involvement of sphingomyelin metabolism in the response to the drug, gene and protein expression of acid and neutral sphingomeylinase was analyzed in comparison with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and vitamin D receptor (VDR), molecules involved in cancer. Gentamicin induced a downregulation of PTEN, VDR, and neutral sphingomyelinase and a strong upregulation of acid sphingomyelinase. Of note, we identified the same upregulation of acid sphingomyelinase upon gentamicin treatment in other cancer cells and not in normal cells. These findings provide new insights into acid sphingomyelinase as therapeutic target, reinforcing studies on the potential role of gentamicin in anticancer therapy.


Assuntos
Inibidores Enzimáticos/farmacologia , Gentamicinas/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Neoplasias Gástricas/enzimologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Expressão Gênica , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
15.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683613

RESUMO

Studies on the relationship between reactive oxygen species (ROS)/manganese superoxide dismutase (MnSOD) and sphingomyelinase (SMase) are controversial. It has been demonstrated that SMase increases the intracellular ROS level and induces gene expression for MnSOD protein. On the other hand, some authors showed that ROS modulate the activation of SMase. The human recombinant manganese superoxide dismutase (rMnSOD) exerting a radioprotective effect on normal cells, qualifies as a possible pharmaceutical tool to prevent and/or cure damages derived from accidental exposure to ionizing radiation. This study aimed to identify neutral SMase (nSMase) as novel molecule connecting rMnSOD to its radiation protective effects. We used a new, and to this date, unique, experimental model to assess the effect of both radiation and rMnSOD in the brain of mice, within a collaborative project among Italian research groups and the Joint Institute for Nuclear Research, Dubna (Russia). Mice were exposed to a set of minor γ radiation and neutrons and a spectrum of neutrons, simulating the radiation levels to which cosmonauts will be exposed during deep-space, long-term missions. Groups of mice were treated or not-treated (controls) with daily subcutaneous injections of rMnSOD during a period of 10 days. An additional group of mice was also pretreated with rMnSOD for three days before irradiation, as a model for preventive measures. We demonstrate that rMnSOD significantly protects the midbrain cells from radiation-induced damage, inducing a strong upregulation of nSMase gene and protein expression. Pretreatment with rMnSOD before irradiation protects the brain with a value of very high nSMase activity, indicating that high levels of activity might be sufficient to exert the rMnSOD preventive role. In conclusion, the protective effect of rMnSOD from radiation-induced brain damage may require nSMase enzyme.


Assuntos
Encéfalo/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Esfingomielina Fosfodiesterase/metabolismo , Superóxido Dismutase/farmacologia , Animais , Encéfalo/patologia , Encéfalo/efeitos da radiação , Feminino , Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos ICR , Radiação Ionizante , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/administração & dosagem , Esfingomielina Fosfodiesterase/genética , Superóxido Dismutase/administração & dosagem , Superóxido Dismutase/genética
16.
Int J Mol Sci ; 19(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772816

RESUMO

Alpha-mannosidosis (α-mannosidosis) is a rare lysosomal storage disorder with an autosomal recessive inheritance caused by mutations in the gene encoding for the lysosomal α-d-mannosidase. So far, 155 variants from 191 patients have been identified and in part characterized at the biochemical level. Similarly to other lysosomal storage diseases, there is no relationship between genotype and phenotype in alpha-mannosidosis. Enzyme replacement therapy is at the moment the most effective therapy for lysosomal storage disease, including alpha-mannosidosis. In this review, the genetic of alpha-mannosidosis has been described together with the results so far obtained by two different therapeutic strategies: bone marrow transplantation and enzyme replacement therapy. The primary indication to offer hematopoietic stem cell transplantation in patients affected by alpha-mannosidosis is preservation of neurocognitive function and prevention of early death. The results obtained from a Phase I⁻II study and a Phase III study provide evidence of the positive clinical effect of the recombinant enzyme on patients with alpha-mannosidosis.


Assuntos
alfa-Manosidose/etiologia , alfa-Manosidose/metabolismo , Animais , Transplante de Medula Óssea , Terapia Combinada , Ativação Enzimática , Terapia de Reposição de Enzimas , Estudos de Associação Genética , Humanos , Mutação , alfa-Manosidase/genética , alfa-Manosidase/metabolismo , alfa-Manosidase/uso terapêutico , alfa-Manosidose/terapia
17.
Int J Mol Sci ; 19(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388783

RESUMO

Daunorubicin is an anticancer drug, and cholesterol is involved in cancer progression, but their relationship has not been defined. In this study, we developed a novel experimental model that utilizes daunorubicin, cholesterol, and daunorubicin plus cholesterol in the same cells (H35) to search for the role of nuclear lipid microdomains, rich in cholesterol and sphingomyelin, in drug resistance. We find that the daunorubicin induces perturbation of nuclear lipid microdomains, localized in the inner nuclear membrane, where active chromatin is anchored. As changes of sphingomyelin species in nuclear lipid microdomains depend on neutral sphingomyelinase activity, we extended our studies to investigate whether the enzyme is modulated by daunorubicin. Indeed the drug stimulated the sphingomyelinase activity that induced reduction of saturated long chain fatty acid sphingomyelin species in nuclear lipid microdomains. Incubation of untreated-drug cells with high levels of cholesterol resulted in the inhibition of sphingomyelinase activity with increased saturated fatty acid sphingomyelin species. In daunodubicin-treated cells, incubation with cholesterol reversed the action of the drug by acting via neutral sphingomyelinase. In conclusion, we suggest that cholesterol and sphingomyelin-forming nuclear lipid microdomains are involved in the drug resistance.


Assuntos
Carcinoma Hepatocelular/patologia , Núcleo Celular/metabolismo , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Microdomínios da Membrana/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Colesterol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteínas da Matriz do Complexo de Golgi/metabolismo , Humanos , Lamina Tipo B/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo
18.
Lipids Health Dis ; 15: 4, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754536

RESUMO

BACKGROUND: Diet and obesity are recognized in the scientific literature as important risk factors for cancer development and progression. Hypercholesterolemia facilitates lymphoma lymphoblastic cell growth and in time turns in hypocholesterolemia that is a sign of tumour progression. The present study examined how and where the cholesterol acts in cancer cells when you reproduce in vitro an in vivo hypercholesterolemia condition. METHODS: We used non-Hodgkin's T cell human lymphoblastic lymphoma (SUP-T1 cell line) and we studied cell morphology, aggressiveness, gene expression for antioxidant proteins, polynucleotide kinase/phosphatase and actin, cholesterol and sphingomyelin content and finally sphingomyelinase activity in whole cells, nuclei and nuclear lipid microdomains. RESULTS: We found that cholesterol changes cancer cell morphology with the appearance of protrusions together to the down expression of ß-actin gene and reduction of ß-actin protein. The lipid influences SUP-T1 cell aggressiveness since stimulates DNA and RNA synthesis for cell proliferation and increases raf1 and E-cadherin, molecules involved in invasion and migration of cancer cells. Cholesterol does not change GRX2 expression but it overexpresses SOD1, SOD2, CCS, PRDX1, GSR, GSS, CAT and PNKP. We suggest that cholesterol reaches the nucleus and increases the nuclear lipid microdomains known to act as platform for chromatin anchoring and gene expression. CONCLUSION: The results imply that, in hypercholesterolemia conditions, cholesterol reaches the nuclear lipid microdomains where activates gene expression coding for antioxidant proteins. We propose the cholesterolemia as useful parameter to monitor in patients with cancer.


Assuntos
Núcleo Celular/metabolismo , Colesterol/sangue , Neoplasias Hematológicas/sangue , Neoplasias Hematológicas/patologia , Microdomínios da Membrana/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , DNA/biossíntese , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , RNA/biossíntese , Esfingomielina Fosfodiesterase/metabolismo , Quinases raf/metabolismo
19.
Lipids Health Dis ; 15(1): 183, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756324

RESUMO

BACKGROUND: Sphingomyelin plays very important roles in cell function under physiological and pathological conditions. Physical and chemical stimuli produce reactive oxygen species that stimulate acid sphingomyelinase to induce apoptosis. Antioxidant plants of the traditional Chinese Pharmacopoeia, such as Lycium Barbarum and Lycium Chinense, have become increasingly popular in Western countries. We investigated the effects of Lycium Chinense on acid sphingomyelinase and sphingomyelin species in relation to gene expression. METHODS: We prepared Lycium Chinense berry extracts and evaluated their antioxidant properties. Increasing amount of extracts was used to test cytotoxic and genotoxic effect on HepG2 cells. Gene expression, protein amount and enzyme activity of acid sphingomyelinase were tested by RT-PCR, immunoblotting and enzymatic activity assay, respectively. Sphingomyelin species were analyzed by UFLC MS/MS. A panel of 96 genes involved in oxidative stress, proliferation, apoptosis and cancer was used to test the effect of LC on gene expression. GLRX2, RNF7, and PTGS1 proteins were analyzed by immunoblotting. RESULTS: We showed that Lycium Chinense berries have high antioxidant properties, have an IC50value of 9.55 mg/mL, do not induce genotoxic effect and maintain high level of cell viability. The berry extracts inhibit acid sphingomyelinase activity and increase both very long fatty acid sphingomyelin species and unsaturated fatty acid sphingomyelin species. Among 96 genes, Lycium Chinense berries up-regulate Glutaredoxin 2 and Ring Finger Protein 7 genes and proteins, able to protect cells from apoptosis. Intrigantly, Lycium Chinense berries down-regulates Prostaglandin H synthase 1 gene but the protein is not expressed in HepG2 cells. CONCLUSION: The results identify acid sphingomyelinase as a novel target of Lycium Chinense berries to decrease saturated/unsaturated fatty acid sphingomyelin ratio, known to be useful for cell health. Consistent with these data, the berries regulate specifically gene expression to protect cells from apoptosis.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Esfingomielina Fosfodiesterase/biossíntese , Esfingomielinas/metabolismo , Antioxidantes/administração & dosagem , Antioxidantes/química , Frutas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Lycium/química , Medicina Tradicional Chinesa , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química
20.
Int J Pharm ; 660: 124337, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885774

RESUMO

Snail slime is an interesting material for effective dermatological use (e.g. wounds). Its properties are stricly connected to the origin. In this paper a snail slime, deriving from the species Helix aspersa Muller and obtained from a company, was deeply characterized and then properly formulated. The slime, obtained by Donatella Veroni method, was firstly submitted to NMR analysis in order to evaluate the chemical composition. The main molecules found are glycolate and allantoin, well known for their activities in wound healing promotion. In vitro experiments performed on keratinocytes, revealed the snail slime ability to promote cellular well-being. Moreover, the microbiological analysis showed high activity against many strains involved in wounds infections such as gram+ (e.g. S. aureus, S. pyogenes), gram- (e.g. P. aeruginosa, E. coli) and the yeast C. albicans. The effect on skin elasticity was evaluated as well by the instrument Cutometer® dualMPA580. The snail slime was then formulated as hydrophilic gel, using a combination of corn starch and sodium hyaluronate as polymers, then used as external water phase of an O/W emulgel. The formulation is physically stable and easily spreadable and demonstrated antimicrobial activity as observed for slime alone, suggesting its suitability to be used for wound treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA