Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 15(37): e1901743, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31222940

RESUMO

Sb2 Te3 exhibits several technologically relevant properties, such as high thermoelectric efficiency, topological insulator character, and phase change memory behavior. Improved performances are observed and novel effects are predicted for this and other chalcogenide alloys when synthetized in the form of high-aspect-ratio nanostructures. The ability to grow chalcogenide nanowires and nanopillars (NPs) with high crystal quality in a controlled fashion, in terms of their size and position, can boost the realization of novel thermoelectric, spintronic, and memory devices. Here, it is shown that highly dense arrays of ultrascaled Sb2 Te3 NPs can be grown by metal organic chemical vapor deposition (MOCVD) on patterned substrates. In particular, crystalline Sb2 Te3 NPs with a diameter of 20 nm and a height of 200 nm are obtained in Au-functionalized, anodized aluminum oxide (AAO) templates with a pore density of ≈5 × 1010 cm-2 . Also, MOCVD growth of Sb2 Te3 can be followed either by mechanical polishing and chemical etching to produce Sb2 Te3 NPs arrays with planar surfaces or by chemical dissolution of the AAO templates to obtain freestanding Sb2 Te3 NPs forests. The illustrated growth method can be further scaled to smaller pore sizes and employed for other MOCVD-grown chalcogenide alloys and patterned substrates.

2.
Nanomaterials (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947707

RESUMO

Ge-rich Ge-Sb-Te compounds are attractive materials for future phase change memories due to their greater crystallization temperature as it provides a wide range of applications. Herein, we report the self-assembled Ge-rich Ge-Sb-Te/Sb2Te3 core-shell nanowires grown by metal-organic chemical vapor deposition. The core Ge-rich Ge-Sb-Te nanowires were self-assembled through the vapor-liquid-solid mechanism, catalyzed by Au nanoparticles on Si (100) and SiO2/Si substrates; conformal overgrowth of the Sb2Te3 shell was subsequently performed at room temperature to realize the core-shell heterostructures. Both Ge-rich Ge-Sb-Te core and Ge-rich Ge-Sb-Te/Sb2Te3 core-shell nanowires were extensively characterized by means of scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Raman microspectroscopy, and electron energy loss spectroscopy to analyze the surface morphology, crystalline structure, vibrational properties, and elemental composition.

3.
RSC Adv ; 10(34): 19936-19942, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520434

RESUMO

Antimony telluride (Sb2Te3) thin films were prepared by a room temperature Metal-Organic Chemical Vapor Deposition (MOCVD) process using antimony chloride (SbCl3) and bis(trimethylsilyl)telluride (Te(SiMe3)2) as precursors. Pre-growth and post-growth treatments were found to be pivotal in favoring out-of-plane and in-plane alignment of the crystallites composing the films. A comprehensive suite of characterization techniques were used to evaluate their composition, surface roughness, as well as to assess their morphology, crystallinity, and structural features, revealing that a quick post-growth annealing triggers the formation of epitaxial-quality Sb2Te3 films on Si(111).

4.
ACS Appl Mater Interfaces ; 11(8): 8319-8326, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30720264

RESUMO

The understanding of magnetoresistance (MR) in organic spin valves (OSVs) based on molecular semiconductors is still incomplete after its demonstration more than a decade ago. Although carrier concentration may play an essential role in spin transport in these devices, direct experimental evidence of its importance is lacking. We probed the role of the charge carrier concentration by studying the interplay between MR and multilevel resistive switching in OSVs. The present work demonstrates that all salient features of these devices, particularly the intimate correlation between MR and resistance, can be accounted for by the impurity band model, based on oxygen migration. Finally, we highlight the critical importance of the carrier concentration in determining spin transport and MR in OSVs and the role of interface-mediated oxygen migration in controlling the OSV response.

5.
ACS Appl Mater Interfaces ; 10(9): 8132-8140, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29411962

RESUMO

Vertical crossbar devices based on manganite and cobalt injecting electrodes and a metal-quinoline molecular transport layer are known to manifest both magnetoresistance (MR) and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the MR and magnetic modulation of bistability. To explain the device functionality, we identify the mechanism responsible for electrical switching by associating the electrical conductivity and the impedance behavior with the chemical states of buried layers obtained by in operando photoelectron spectroscopy. These measurements revealed that a significant fraction of oxygen ions migrate under voltage application, resulting in a modification of the electronic properties of the organic material and of the oxidation state of the interfacial layer with the ferromagnetic contacts. Variable oxygen doping of the organic molecules represents the key element for correlating bistability and MR, and our measurements provide the first experimental evidence in favor of the impurity-driven model describing the spin transport in organic semiconductors in similar devices.

6.
Sci Rep ; 4: 7397, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25491921

RESUMO

The outgrowth formation in inorganic thin films is a dramatic problem that has limited the technological impact of many techniques and materials. Outgrowths are often themselves part of the films, but are detrimental for vertical junctions since they cause short-circuits or work as defects, compromising the reproducibility and in some cases the operation of the corresponding devices. The problem of outgrowth is particularly relevant in ablation-based methods and in some complex oxides, but is present in a large variety of systems and techniques. Here we propose an efficient local electrochemical method to selectively decompose the outgrowths of conductive oxide thin films by electrochemical decomposition, without altering the properties of the background film. The process is carried out using the same set-up as for local oxidation nanolithography, except for the sign of the voltage bias and it works at the nanoscale both as serial method using a scanning probe and as parallel method using conductive stamps. We demonstrated our process using La 0.7 Sr 0.3 MnO3 perovskite as a representative material but in principle it can be extended to many other conductive systems.

7.
Adv Mater ; 25(4): 534-8, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23097157

RESUMO

Memristors are one of the most promising candidates for future information and communications technology (ICT) architectures. Two experimental proofs of concept are presented based on the intermixing of spintronic and memristive effects into a single device, a magnetically enhanced memristor (MEM). By exploiting the interaction between the memristance and the giant magnetoresistance (GMR), a universal implication (IMP) logic gate based on a single MEM device is realized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA