Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Neurobiol Dis ; 117: 203-210, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29908326

RESUMO

Mitochondrial encephalomyopathies (MEs) result from mutations in mitochondrial genes critical to oxidative phosphorylation. Severe and untreatable ME results from mutations affecting each endogenous mitochondrial encoded gene, including all 13 established protein coding genes. Effective techniques to manipulate mitochondrial genome are limited and targeted mitochondrial protein expression is currently unavailable. Here we report the development of a mitochondrial-targeted RNA expression (mtTRES) vector capable of protein expression within mitochondria (mtTRESPro). We demonstrate that mtTRESPro expressed RNAs are targeted to mitochondria and are capable of being translated using EGFP encoded constructs in vivo. We additionally test mtTRESPro constructs encoding wild type ATP6 for their ability to rescue an established ATP61Drosophila model of ME. Genetic rescue is examined including tests with co-expression of mitochondrial targeted translational inhibitors TLI-NCL::ATP6 RNAs that function to reduce expression of the endogenous mutant protein. The data demonstrate allotopic RNA expression of mitochondrial targeted wild type ATP6 coding RNAs are sufficient to partially rescue a severe and established animal model of ME but only when combined with a method to inhibit mutant protein expression, which likely competes for incorporation into complex V.


Assuntos
Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Fases de Leitura Aberta/fisiologia , RNA Mitocondrial/genética , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila , Células HeLa , Humanos , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo
2.
J Cell Sci ; 126(Pt 14): 3151-8, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23641070

RESUMO

Triosephosphate isomerase (TPI) is a glycolytic enzyme that converts dihydroxyacetone phosphate (DHAP) into glyceraldehyde 3-phosphate (GAP). Glycolytic enzyme dysfunction leads to metabolic diseases collectively known as glycolytic enzymopathies. Of these enzymopathies, TPI deficiency is unique in the severity of neurological symptoms. The Drosophila sugarkill mutant closely models TPI deficiency and encodes a protein prematurely degraded by the proteasome. This led us to question whether enzyme catalytic activity was crucial to the pathogenesis of TPI sugarkill neurological phenotypes. To study TPI deficiency in vivo we developed a genomic engineering system for the TPI locus that enables the efficient generation of novel TPI genetic variants. Using this system we demonstrate that TPI sugarkill can be genetically complemented by TPI encoding a catalytically inactive enzyme. Furthermore, our results demonstrate a non-metabolic function for TPI, the loss of which contributes significantly to the neurological dysfunction in this animal model.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Drosophila melanogaster/fisiologia , Longevidade , Paralisia/enzimologia , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/metabolismo , Anemia Hemolítica Congênita não Esferocítica/genética , Animais , Erros Inatos do Metabolismo dos Carboidratos/genética , Catálise , Fosfato de Di-Hidroxiacetona/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/enzimologia , Feminino , Técnicas de Inativação de Genes , Teste de Complementação Genética , Engenharia Genética , Gliceraldeído 3-Fosfato/metabolismo , Glicólise/genética , Temperatura Alta/efeitos adversos , Masculino , Mutação/genética , Paralisia/genética , Estresse Fisiológico/genética , Transgenes/genética , Triose-Fosfato Isomerase/genética
3.
Neurobiol Dis ; 69: 15-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24807207

RESUMO

Endogenous mitochondrial genes encode critical oxidative phosphorylation components and their mutation results in a set of disorders known collectively as mitochondrial encephalomyopathies. There is intensive interest in modulating mitochondrial function as organelle dysfunction has been associated with numerous disease states. Proteins encoded by the mitochondrial genome cannot be genetically manipulated by current techniques. Here we report the development of a mitochondrial-targeted RNA expression system (mtTRES) utilizing distinct non-coding leader sequences (NCLs) and enabling in vivo expression of small mitochondrial-targeted RNAs. mtTRES expressing small chimeric antisense RNAs was used as translational inhibitors (TLIs) to target endogenous mitochondrial protein expression in vivo. By utilizing chimeric antisense RNA we successfully modulate expression of two mitochondrially-encoded proteins, ATP6 and COXII, and demonstrate the utility of this system in vivo and in human cells. This technique has important and obvious research and clinical implications.


Assuntos
Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , RNA Antissenso/genética , Pequeno RNA não Traduzido/genética , Envelhecimento/metabolismo , Animais , Animais Geneticamente Modificados , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Vetores Genéticos , Células HeLa , Humanos , Mitocôndrias/metabolismo , Encefalomiopatias Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Estabilidade de RNA , RNA Antissenso/metabolismo , Pequeno RNA não Traduzido/metabolismo
4.
Neurobiol Dis ; 45(1): 362-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21889980

RESUMO

Mitochondrial dysfunction plays an important role in the pathogenesis of neurodegenerative diseases, numerous other disease states and senescence. The ability to monitor reactive oxygen species (ROS) within tissues and over time in animal model systems is of significant research value. Recently, redox-sensitive fluorescent proteins have been developed. Transgenic flies expressing genetically encoded redox-sensitive GFPs (roGFPs) targeted to the mitochondria function as a useful in vivo assay of mitochondrial dysfunction and ROS. We have generated transgenic flies expressing a mitochondrial-targeted roGFP2, demonstrated its responsiveness to redox changes in cultured cells and in vivo and utilized this protein to discover elevated ROS as a contributor to pathogenesis in a characterized neurodegeneration mutant and in a model of mitochondrial encephalomyopathy. These studies identify the role of ROS in pathogenesis associated with mitochondrial disease and demonstrate the utility of genetically encoded redox sensors in Drosophila.


Assuntos
Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Drosophila melanogaster , Mitocôndrias/genética , Doenças Mitocondriais/genética , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Oxirredução
5.
Genetics ; 179(2): 855-62, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18458110

RESUMO

Triose phosphate isomerase (TPI) deficiency glycolytic enzymopathy is a progressive neurodegenerative condition that remains poorly understood. The disease is caused exclusively by specific missense mutations affecting the TPI protein and clinically features hemolytic anemia, adult-onset neurological impairment, degeneration, and reduced longevity. TPI has a well-characterized role in glycolysis, catalyzing the isomerization of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P); however, little is known mechanistically about the pathogenesis associated with specific recessive mutations that cause progressive neurodegeneration. Here, we describe key aspects of TPI pathogenesis identified using the TPI(sugarkill) mutation, a Drosophila model of human TPI deficiency. Specifically, we demonstrate that the mutant protein is expressed, capable of forming a homodimer, and is functional. However, the mutant protein is degraded by the 20S proteasome core leading to loss-of-function pathogenesis.


Assuntos
Drosophila/enzimologia , Drosophila/genética , Genes de Insetos , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo , Animais , Animais Geneticamente Modificados , Dimerização , Estabilidade Enzimática , Expressão Gênica , Genes Recessivos , Humanos , Longevidade/genética , Longevidade/fisiologia , Modelos Genéticos , Atividade Motora/genética , Atividade Motora/fisiologia , Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Quaternária de Proteína , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/deficiência
6.
J Neurosci ; 26(3): 810-20, 2006 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-16421301

RESUMO

Mitochondrial encephalomyopathies are common and devastating multisystem genetic disorders characterized by neuromuscular dysfunction and tissue degeneration. Point mutations in the human mitochondrial ATP6 gene are known to cause several related mitochondrial disorders: NARP (neuropathy, ataxia, and retinitis pigmentosa), MILS (maternally inherited Leigh's syndrome), and FBSN (familial bilateral striatal necrosis). We identified a pathogenic mutation in the Drosophila mitochondrial ATP6 gene that causes progressive, adult-onset neuromuscular dysfunction and myodegeneration. Our results demonstrate ultrastructural defects in the mitochondrial innermembrane, neural dysfunction, and a marked reduction in mitochondrial ATP synthase activity associated with this mutation. This Drosophila mutant recapitulates key features of the human neuromuscular disorders enabling detailed in vivo studies of these enigmatic diseases.


Assuntos
DNA Mitocondrial/genética , Proteínas de Drosophila/genética , Encefalomiopatias Mitocondriais/enzimologia , Encefalomiopatias Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Animais , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Feminino , Masculino , Encefalomiopatias Mitocondriais/patologia , Mutação Puntual
7.
Genetics ; 174(3): 1237-46, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16980388

RESUMO

Heritable mutations, known as inborn errors of metabolism, cause numerous devastating human diseases, typically as a result of a deficiency in essential metabolic products or the accumulation of toxic intermediates. We have isolated a missense mutation in the Drosophila sugarkill (sgk) gene that causes phenotypes analogous to symptoms of triosephosphate isomerase (TPI) deficiency, a human familial disease, characterized by anaerobic metabolic dysfunction resulting from pathological missense mutations affecting the encoded TPI protein. In Drosophila, the sgk gene encodes the glycolytic enzyme TPI. Our analysis of sgk mutants revealed TPI impairment associated with reduced longevity, progressive locomotor deficiency, and neural degeneration. Biochemical studies demonstrate that mutation of this glycolytic enzyme gene does not result in a bioenergetic deficit, suggesting an alternate cause of enzymopathy associated with TPI impairment.


Assuntos
Drosophila/genética , Doenças Metabólicas/genética , Erros Inatos do Metabolismo , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Drosophila/enzimologia , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Longevidade/genética , Doenças Metabólicas/enzimologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Treonina/metabolismo , Transgenes , Triose-Fosfato Isomerase/metabolismo
8.
Nucleic Acids Res ; 31(22): 6502-8, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14602908

RESUMO

SR proteins are essential pre-mRNA splicing factors that have been shown to bind a number of exonic splicing enhancers where they function to stimulate the splicing of adjacent introns. Members of the SR protein family contain one or two N-terminal RNA binding domains, as well as a C-terminal arginine-serine (RS) rich domain. The RS domains mediate protein-protein interactions with other RS domain containing proteins and are essential for many, but not all, SR protein functions. Hybrid proteins containing an RS domain fused to the bacteriophage MS2 coat protein are sufficient to activate enhancer-dependent splicing in HeLa cell nuclear extract when bound to the pre-mRNA. Here we report progress towards determining the protein sequence requirements for RS domain function. We show that the RS domains from non-SR proteins can also function as splicing activation domains when tethered to the pre-mRNA. Truncation experiments with the RS domain of the human SR protein 9G8 identified a 29 amino acid segment, containing 26 arginine or serine residues, that is sufficient to activate splicing when fused to MS2. We also show that synthetic domains composed solely of RS dipeptides are capable of activating splicing, although their potency is proportional to their size.


Assuntos
Precursores de RNA/metabolismo , Splicing de RNA , Sequências Repetitivas de Ácido Nucleico/genética , Sequência de Aminoácidos , Animais , Arginina/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Deleção de Sequência , Serina/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Fator de Processamento U2AF , Spodoptera
9.
J Cell Biol ; 211(2): 273-86, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26483556

RESUMO

Lethal giant larvae (Lgl) plays essential and conserved functions in regulating both cell polarity and tumorigenesis in Drosophila melanogaster and vertebrates. It is well recognized that plasma membrane (PM) or cell cortex localization is crucial for Lgl function in vivo, but its membrane-targeting mechanisms remain poorly understood. Here, we discovered that hypoxia acutely and reversibly inhibits Lgl PM targeting through a posttranslational mechanism that is independent of the well-characterized atypical protein kinase C (aPKC) or Aurora kinase-mediated phosphorylations. Instead, we identified an evolutionarily conserved polybasic (PB) domain that targets Lgl to the PM via electrostatic binding to membrane phosphatidylinositol phosphates. Such PB domain-mediated PM targeting is inhibited by hypoxia, which reduces inositol phospholipid levels on the PM through adenosine triphosphate depletion. Moreover, Lgl PB domain contains all the identified phosphorylation sites of aPKC and Aurora kinases, providing a molecular mechanism by which phosphorylations neutralize the positive charges on the PB domain to inhibit Lgl PM targeting.


Assuntos
Hipóxia Celular/fisiologia , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteínas Supressoras de Tumor/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Dados de Sequência Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Proteínas Supressoras de Tumor/genética
10.
Methods Mol Biol ; 257: 65-74, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14769996

RESUMO

Single-strand conformational polymorphism analysis has been used successfully to identify single nucleotide changes within sequences based on the fact that multidetection enhancement gels will separate molecules based on their conformation rather than their size. We have expanded the utility of this technique to analyze easily the alternative splicing of pre-mRNAs containing multiple mutually exclusive exons of the same size. We have used this technique to study the Caenorhabditis elegans let-2 gene containing two alternative exons and the Drosophilia melanogaster Dscam gene, which contains 12 mutually exclusive exons. The ease and the quantitative nature of this technique should be very useful.


Assuntos
Processamento Alternativo/fisiologia , Caenorhabditis elegans/genética , Proteínas de Drosophila , Drosophila melanogaster/genética , Eletroforese/métodos , Genes de Helmintos/fisiologia , Proteínas/isolamento & purificação , Animais , Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular , Drosophila melanogaster/metabolismo , Éxons/genética , Íntrons/genética , Polimorfismo Conformacional de Fita Simples , Isoformas de Proteínas , Proteínas/genética , Precursores de RNA/genética
11.
Methods Mol Biol ; 257: 245-54, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14770010

RESUMO

RNA interference (RNAi) is a useful tool for degrading targeted messenger RNAs (mRNAs) and thus "knocking down" the abundance of the encoded protein. We have been using RNAi in cultured Drosophila cells to evaluate the effect of "knocking down" numerous mRNA processing factors on the alternative splicing of specific pre-mRNAs. This relatively simple technique has allowed us to identify a number of splicing factors that impact the alternative splicing of particular alternatively spliced exons. This approach can be extended to examine the splicing of nearly any gene.


Assuntos
Processamento Alternativo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Animais , Células Cultivadas , Proteínas de Drosophila/genética , Precursores de RNA/metabolismo
12.
Brain Behav ; 2(4): 424-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22950046

RESUMO

Reactive oxygen species (ROS) play essential roles in cell signaling, survival, and homeostasis. Aberrant ROS lead to disease and contribute to the aging process. Numerous enzymes and vigilant antioxidant pathways are required to regulate ROS for normal cellular health. Mitochondria are a major source of ROS, and mechanisms to prevent elevated ROS during oxidative phosphorylation require super oxide dismutase (SOD) activity. SOD2, also known as MnSOD, is targeted to mitochondria and is instrumental in regulating ROS by conversion of superoxides to hydrogen peroxide, which is further broken down into H(2)O and oxygen. Here, we describe the identification of a novel mutation within the mitochondrial SOD2 enzyme in Drosophila that results in adults with an extremely shortened life span, sensitivity to hyperoxia, and neuropathology. Additional studies demonstrate that this novel mutant, SOD2(bewildered), exhibits abnormal brain morphology, suggesting a critical role for this protein in neurodevelopment. We investigated the basis of this neurodevelopmental defect and discovered an increase in aberrant axonal that could underlie the aberrant neurodevelopment and brain morphology defects. This novel allele, SOD2(bewildered), provides a unique opportunity to study the effects of increased mitochondrial ROS on neural development, axonal targeting, and neural cell degeneration in vivo.

13.
PLoS One ; 6(10): e25823, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21991365

RESUMO

Numerous mitochondrial DNA mutations cause mitochondrial encephalomyopathy: a collection of related diseases for which there exists no effective treatment. Mitochondrial encephalomyopathies are complex multisystem diseases that exhibit a relentless progression of severity, making them both difficult to treat and study. The pathogenic and compensatory metabolic changes that are associated with chronic mitochondrial dysfunction are not well understood. The Drosophila ATP6(1) mutant models human mitochondrial encephalomyopathy and allows the study of metabolic changes and compensation that occur throughout the lifetime of an affected animal. ATP6(1)animals have a nearly complete loss of ATP synthase activity and an acute bioenergetic deficit when they are asymptomatic, but surprisingly we discovered no chronic bioenergetic deficit in these animals during their symptomatic period. Our data demonstrate dynamic metabolic compensatory mechanisms that sustain normal energy availability and activity despite chronic mitochondrial complex V dysfunction resulting from an endogenous mutation in the mitochondrial DNA. ATP6(1)animals compensate for their loss of oxidative phosphorylation through increases in glycolytic flux, ketogenesis and Kreb's cycle activity early during pathogenesis. However, succinate dehydrogenase activity is reduced and mitochondrial supercomplex formation is severely disrupted contributing to the pathogenesis seen in ATP6(1) animals. These studies demonstrate the dynamic nature of metabolic compensatory mechanisms and emphasize the need for time course studies in tractable animal systems to elucidate disease pathogenesis and novel therapeutic avenues.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Animais , Comportamento Animal , Respiração Celular , Ciclo do Ácido Cítrico , Progressão da Doença , Transporte de Elétrons , Metabolismo Energético , Glicólise , Humanos , Longevidade , Doenças Mitocondriais/patologia , Modelos Biológicos , Fenótipo , Multimerização Proteica , Análise de Sobrevida , Fatores de Tempo
15.
Mol Interv ; 5(5): 292-303, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16249525

RESUMO

The fruit fly, Drosophila melanogaster, is a powerful model genetic organism that has been used since the turn of the previous century in the study of complex biological problems. In the last decade, numerous researchers have focused their attention on understanding neurodegenerative diseases by utilizing this model system. Numerous Drosophila mutants have been isolated that profoundly affect neural viability and integrity of the nervous system with age. Additionally, many transgenic strains have been developed as models of human disease conditions. We review the existing Drosophila neurodegenerative mutants and transgenic disease models, and discuss the role of the fruit fly in therapeutic development for neurodegenerative diseases.


Assuntos
Modelos Animais de Doenças , Drosophila/genética , Doenças Neurodegenerativas , Animais , Animais Geneticamente Modificados , Drosophila/fisiologia , Humanos , Mutação , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética
16.
RNA ; 8(6): 718-24, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12088145

RESUMO

The goal of functional genomics is to determine the function of each protein encoded by an organism. Typically, this is done by inactivating individual genes and, subsequently, analyzing the phenotype of the modified organisms. In higher eukaryotes, where a tremendous amount of alternative splicing occurs, such approaches are not feasible because they have the potential to simultaneously affect multiple proteins that could have quite distinct and important functions. Thus, it is necessary to develop techniques that inactivate only a subset of proteins synthesized from genes encoding alternatively spliced mRNAs. Here we demonstrate that RNA interference (RNAi) can be used to selectively degrade specific alternatively spliced mRNA isoforms in cultured Drosophila cells. This is achieved by treating the cells with double-stranded RNA corresponding to an alternatively spliced exon. This technique may prove to be a powerful tool to assess the function of proteins synthesized from alternatively spliced mRNAs. In addition, these results have implications regarding the mechanism of RNAi in Drosophila.


Assuntos
Processamento Alternativo , Éxons , RNA Mensageiro/metabolismo , Animais , Drosophila , RNA Mensageiro/genética
17.
Proc Natl Acad Sci U S A ; 101(45): 15974-9, 2004 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-15492211

RESUMO

Alternative splicing is thought to be regulated by nonspliceosomal RNA binding proteins that modulate the association of core components of the spliceosome with the pre-mRNA. Although the majority of metazoan genes encode pre-mRNAs that are alternatively spliced, remarkably few splicing regulators are currently known. Here, we used RNA interference to examine the role of >70% of the Drosophila RNA-binding proteins in regulating alternative splicing. We identified 47 proteins as splicing regulators, 26 of which have not previously been implicated in alternative splicing. Many of the regulators we identified are nonspliceosomal RNA-binding proteins. However, our screen unexpectedly revealed that altering the concentration of certain core components of the spliceosome specifically modulates alternative splicing. These results significantly expand the number of known splicing regulators and reveal an extraordinary richness in the mechanisms that regulate alternative splicing.


Assuntos
Processamento Alternativo , Drosophila melanogaster/genética , Interferência de RNA , Animais , Moléculas de Adesão Celular , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genes de Insetos , Mutação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA