Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982380

RESUMO

Triple-negative breast cancer has a poor prognosis and is non-responsive to first-line therapies; hence, new therapeutic strategies are needed. Enhanced store-operated Ca2+ entry (SOCE) has been widely described as a contributing factor to tumorigenic behavior in several tumor types, particularly in breast cancer cells. SOCE-associated regulatory factor (SARAF) acts as an inhibitor of the SOCE response and, therefore, can be a potential antitumor factor. Herein, we generated a C-terminal SARAF fragment to evaluate the effect of overexpression of this peptide on the malignancy of triple-negative breast cancer cell lines. Using both in vitro and in vivo approaches, we showed that overexpression of the C-terminal SARAF fragment reduced proliferation, cell migration, and the invasion of murine and human breast cancer cells by decreasing the SOCE response. Our data suggest that regulating the activity of the SOCE response via SARAF activity might constitute the basis for further alternative therapeutic strategies for triple-negative breast cancer.


Assuntos
Proteínas de Membrana , Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Proteínas de Membrana/metabolismo , Cálcio/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Transporte de Íons , Citoplasma/metabolismo , Sinalização do Cálcio , Molécula 1 de Interação Estromal/metabolismo
2.
FASEB J ; 35(5): e21597, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33908663

RESUMO

Aging is a gradual biological process characterized by a decrease in cellular and organism functions. Aging-related processes involve changes in the expression and activity of several proteins. Here, we identified the transmembrane protease serine 11a (TMPRSS11a) as a new age-specific protein that plays an important role in skin wound healing. TMPRSS11a levels increased with age in rodent and human skin and gingival samples. Strikingly, overexpression of TMPRSS11a decreased cell migration and spreading, and inducing cellular senescence. Mass spectrometry, bioinformatics, and functional analyses revealed that TMPRSS11a interacts with integrin ß1 through an RGD sequence contained within the C-terminal domain and that this motif was relevant for cell migration. Moreover, TMPRSS11a was associated with cellular senescence, as shown by overexpression and downregulation experiments. In agreement with tissue-specific expression of TMPRSS11a, shRNA-mediated downregulation of this protein improved wound healing in the skin, but not in the skeletal muscle of old mice, where TMPRSS11a is undetectable. Collectively, these findings indicate that TMPRSS11a is a tissue-specific factor relevant for wound healing, which becomes elevated with aging, promoting cellular senescence and inhibiting cell migration and skin repair.


Assuntos
Envelhecimento/patologia , Movimento Celular , Fibroblastos/patologia , Proteínas de Membrana/metabolismo , Serina Proteases/metabolismo , Pele/patologia , Cicatrização , Adolescente , Adulto , Idoso , Envelhecimento/metabolismo , Animais , Proliferação de Células , Fibroblastos/metabolismo , Gengiva/metabolismo , Gengiva/patologia , Humanos , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , Serina Proteases/genética , Transdução de Sinais , Pele/metabolismo , Adulto Jovem
3.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682554

RESUMO

Secreted protein acidic and rich in cysteine (SPARC), or osteonectin, is a matricellular protein that modulates interactions between cells and their microenvironment. SPARC is expressed during extracellular matrix remodeling and is abundant in bone marrow and high-grade prostate cancer (PCa). In PCa, SPARC induces changes associated with epithelial-mesenchymal transition (EMT), enhancing migration and invasion and increasing the expression of EMT transcriptional factor Zinc finger E-box-binding homeobox 1 (ZEB1), but not Zinc finger protein SNAI1 (Snail) or Zinc finger protein SNAI2 (Slug). It is unknown whether the SPARC-induced downregulation of E-cadherin in PCa cells depends on ZEB1. Several integrins are mediators of SPARC effects in cancer cells. Because integrin signaling can induce EMT programs, we hypothesize that SPARC induces E-cadherin repression through the activation of integrins and ZEB1. Through stable knockdown and the overexpression of SPARC in PCa cells, we demonstrate that SPARC downregulates E-cadherin and increases vimentin, ZEB1, and integrin ß3 expression. Knocking down SPARC in PCa cells decreases the tyrosine-925 phosphorylation of FAK and impairs focal adhesion formation. Blocking integrin αvß3 and silencing ZEB1 revert both the SPARC-induced downregulation of E-cadherin and cell migration enhancement. We conclude that SPARC induces E-cadherin repression and enhances PCa cell migration through the integrin αvß3/ZEB1 signaling pathway.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Integrina alfaVbeta3/metabolismo , Masculino , Invasividade Neoplásica , Osteonectina/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
4.
FASEB J ; 34(6): 7847-7865, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301552

RESUMO

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+ -activated nonselective cationic channel that regulates cell migration and contractility. Increased TRPM4 expression has been related to pathologies, in which cytoskeletal rearrangement and cell migration are altered, such as metastatic cancer. Here, we identify the K+ channel tetramerization domain 5 (KCTD5) protein, a putative adaptor of cullin3 E3 ubiquitin ligase, as a novel TRPM4-interacting protein. We demonstrate that KCTD5 is a positive regulator of TRPM4 activity by enhancing its Ca2+ sensitivity. We show that through its effects on TRPM4 that KCTD5 promotes cell migration and contractility. Finally, we observed that both TRPM4 and KCTD5 expression are increased in distinct patterns in different classes of breast cancer tumor samples. Together, these data support that TRPM4 activity can be regulated through expression levels of either TRPM4 or KCTD5, not only contributing to increased understanding of the molecular mechanisms involved on the regulation of these important ion channels, but also providing information that could inform treatments based on targeting these distinct molecules that define TRPM4 activity.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Canais de Potássio/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Mama/metabolismo , Mama/patologia , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Células MCF-7 , Prognóstico , Ubiquitina-Proteína Ligases/metabolismo
5.
BMC Oral Health ; 21(1): 106, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750358

RESUMO

BACKGROUND: This study aimed to evaluate the biological response of human apical papilla cells to different calcium hydroxide formulations and three tricalcium silicate-based materials. METHODS: Primary cells were obtained from explants of young immature premolars. 20,000 cells adhered for 24 h over discs of Biodentine™, ProRoot®MTA, BioRoot®RCS and calcium hydroxide mixed either with sodium chloride 0.9%w/v or polyethylene glycol and UltraCal® were used to evaluate cell adhesion by scanning electron microscopy and cell viability by MTT assay. RESULTS: Cells adhered to ProRoot®MTA showed an increase of F-actin like protrusions, suggesting bioactivity. Cells adhered to UltraCal® show protrusion such as filopodia. On the contrary, cells adhered to BioRoot®RCS showed no signs of any cellular protrusion. Regarding viability between the materials, we found a higher percentage of viability in cells cultured over discs of Biodentine™ and ProRoot®MTA. CONCLUSION: ProRoot®MTA and Biodentine™ exhibit a better cellular response of human apical papilla cells in vitro conditions compared to BioRoot® and calcium hydroxide diluted in sodium chloride.


Assuntos
Hidróxido de Cálcio , Materiais Restauradores do Canal Radicular , Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Hidróxido de Cálcio/farmacologia , Combinação de Medicamentos , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Óxidos , Silicatos/farmacologia
6.
FASEB J ; 33(8): 9434-9452, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112396

RESUMO

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective cationic channel involved in a wide variety of physiologic and pathophysiological processes. Bioinformatics analyses of the primary sequence of TRPM4 allowed us to identify a putative motif for interaction with end-binding (EB) proteins, which are microtubule plus-end tracking proteins. Here, we provide novel data suggesting that TRPM4 interacts with EB proteins. We show that mutations of the putative EB binding motif abolish the TRPM4-EB interaction, leading to a reduced expression of the mature population of the plasma membrane channel and instead display an endoplasmic reticulum-associated distribution. Furthermore, we demonstrate that EB1 and EB2 proteins are required for TRPM4 trafficking and functional activity. Finally, we demonstrated that the expression of a soluble fragment containing the EB binding motif of TRPM4 reduces the plasma membrane expression of the channel and affects TRPM4-dependent focal adhesion disassembly and cell invasion processes.-Blanco, C., Morales, D., Mogollones, I., Vergara-Jaque, A., Vargas, C., Álvarez, A., Riquelme, D., Leiva-Salcedo, E., González, W., Morales, D., Maureira, D., Aldunate, I., Cáceres, M., Varela, D., Cerda, O. EB1- and EB2-dependent anterograde trafficking of TRPM4 regulates focal adhesion turnover and cell invasion.


Assuntos
Adesões Focais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Biotinilação/fisiologia , Células COS , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Chlorocebus aethiops , Eletrofisiologia , Imunofluorescência , Humanos , Immunoblotting , Proteínas Associadas aos Microtúbulos/genética , Simulação de Dinâmica Molecular , Mutação/genética , Plasmídeos/genética , Canais de Cátion TRPM/genética
7.
BMC Anesthesiol ; 20(1): 121, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434495

RESUMO

BACKGROUND: The glycocalyx layer is a key structure in the endothelium. Tourniquet-induced ischemic periods are used during orthopedic surgery, and the reactive oxygen species generated after ischemia-reperfusion may mediate the shedding of the glycocalyx. Here, we describe the effects of tourniquet-induced ischemia-reperfusion and compare the effects of sevoflurane and propofol on the release of endothelial biomarkers after ischemia-reperfusion in knee-ligament surgery. METHODS: This pilot, single-center, blinded, randomized, controlled trial included 16 healthy patients. After spinal anesthesia, hypnosis was achieved with sevoflurane or propofol according to randomization. During the perioperative period, five venous blood samples were collected for quantification of syndecan-1, heparan sulfate, and thrombomodulin from blood serum by using ELISA assays kits. Sample size calculation was performed to detect a 25% change in the mean concentration of syndecan-1 with an alpha of 0.05 and power of 80%. RESULTS: For our primary outcome, a two-way ANOVA with post-hoc Bonferroni correction analysis showed no differences in syndecan-1 concentrations between the sevoflurane and propofol groups at any time point. In the sevoflurane group, we noted an increase in syndecan-1 concentrations 90 min after tourniquet release in the sevoflurane group from 34.6 ± 24.4 ng/mL to 47.9 ± 29.8 ng/mL (Wilcoxon test, p < 0.01) that was not observed in patients randomized to the propofol group. The two-way ANOVA showed no intergroup differences in heparan sulfate and thrombomodulin levels. CONCLUSIONS: Superficial endothelial damage without alterations in the cell layer integrity was observed after tourniquet knee-ligament surgery. There was no elevation in serum endothelial biomarkers in the propofol group patients. Sevoflurane did not show the protective effect observed in in vitro and in vivo studies. TRIAL REGISTRATION: The trial was registered in www.clinicaltrials.gov (ref: NCT03772054, Registered 11 December 2018).


Assuntos
Endotélio/efeitos dos fármacos , Joelho/cirurgia , Ligamentos/cirurgia , Propofol/farmacologia , Sevoflurano/farmacologia , Torniquetes/efeitos adversos , Adulto , Endotélio/química , Glicocálix/efeitos dos fármacos , Heparitina Sulfato/sangue , Humanos , Projetos Piloto , Traumatismo por Reperfusão/prevenção & controle , Sindecana-1/sangue
8.
Birth Defects Res A Clin Mol Teratol ; 106(10): 814-830, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27488927

RESUMO

BACKGROUND: Orofacial clefts (OFCs) are common birth defects, which include a range of disorders with a complex etiology affecting formation of craniofacial structures. Some forms of syndromic OFCs are produced by defects in the cholesterol pathway. The principal enzyme of the cholesterol pathway is the 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Our aim is to study whether defects of HMGCR function would produce orofacial malformation similar to those found in disorders of cholesterol synthesis. METHODS: We used zebrafish hmgcrb mutants and HMGCR inhibition assay using atorvastatin during early and late stages of orofacial morphogenesis in zebrafish. To describe craniofacial phenotypes, we stained cartilage and bone and performed in situ hybridization using known craniofacial markers. Also, we visualized neural crest cell migration in a transgenic fish. RESULTS: Our results showed that mutants displayed loss of cartilage and diminished orofacial outgrowth, and in some cases palatal cleft. Late treatments with statin show a similar phenotype. Affected-siblings displayed a moderate phenotype, whereas early-treated embryos had a minor cleft. We found reduced expression of the downstream component of Sonic Hedgehog-signaling gli1 in ventral brain, oral ectoderm, and pharyngeal endoderm in mutants and in late atorvastatin-treated embryos. CONCLUSION: Our results suggest that HMGCR loss-of-function primarily affects postmigratory cranial neural crest cells through abnormal Sonic Hedgehog signaling, probably induced by reduction in metabolites of the cholesterol pathway. Malformation severity correlates with the grade of HMGCR inhibition, developmental stage of its disruption, and probably with availability of maternal lipids. Together, our results might help to understand the spectrum of orofacial phenotypes found in cholesterol synthesis disorders. Birth Defects Research (Part A) 106:814-830, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Induzidas por Medicamentos , Atorvastatina/efeitos adversos , Fenda Labial , Fissura Palatina , Hidroximetilglutaril-CoA Redutases , Mutação , Proteínas de Peixe-Zebra , Peixe-Zebra , Anormalidades Induzidas por Medicamentos/enzimologia , Anormalidades Induzidas por Medicamentos/genética , Animais , Atorvastatina/farmacologia , Fenda Labial/induzido quimicamente , Fenda Labial/enzimologia , Fenda Labial/genética , Fenda Labial/patologia , Fissura Palatina/induzido quimicamente , Fissura Palatina/enzimologia , Fissura Palatina/genética , Fissura Palatina/patologia , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Pflugers Arch ; 467(8): 1723-1732, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25231975

RESUMO

Transient receptor potential melastatin-like 4 (TRPM4) is a Ca(2+)-activated non-selective cation channel expressed in a wide range of human tissues. TRPM4 participates in a variety of physiological processes such as T cell activation, myogenic vasoconstriction, and allergic reactions. TRPM4 Ca(2+) sensitivity is enhanced by calmodulin (CaM) and phosphathydilinositol 4, 5-bisphosphate (PI(4,5)P2) binding, as well as, under certain conditions, PKC activation. However, information as to the mechanisms of modulation of this channel remains unknown, including direct identification of phosphorylation sites on TRPM4 and their role in channel features. Here, we use mass-spectrometric-based proteomic approaches (immunoprecipitation and tandem mass spectrometry) to unambiguously identify S839 as a phosphorylation site present on human TRPM4 expressed in a human cell line. Site-directed mutagenesis employing a serine to alanine mutation to eliminate phosphorylation, and a phospho-mimetic aspartate mutation, as well as biochemical and immunocytochemical experiments, revealed a role for S839 phosphorylation in the basolateral expression of TRPM4 channels in epithelial cells. Moreover, we demonstrated that casein kinase 1 (CK1) phosphorylates S839 and is responsible for the basolateral localization of TRPM4.


Assuntos
Caseína Quinase I/metabolismo , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Células HEK293 , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Transporte Proteico , Proteômica/métodos , Serina , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética , Espectrometria de Massas em Tandem , Transfecção
10.
Microvasc Res ; 98: 187-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24518820

RESUMO

A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases.


Assuntos
Células Endoteliais/citologia , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/metabolismo , Adesão Celular , Movimento Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/química , Inflamação/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo
11.
Helicobacter ; 19(3): 182-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24628778

RESUMO

BACKGROUND: Helicobacter pylori is a motile microaerophilic bacterium that colonizes the human stomach. H. pylori infection triggers gastric diseases, such as gastritis, peptic ulcer and gastric cancer. Stomach represents a barrier for microorganism colonization, particularly because of its high hydrochloric acid concentration. The main mechanism developed by H. pylori to maintain intracellular pH homeostasis in this environment is the urease activity. However, urease negative strains can be also isolated from clinical samples, suggesting that H. pylori presents other components involved in acid resistance. OBJECTIVE: Here, we present some evidence that the arginine decarboxylase gene (speA) in H. pylori could be involved in an acid adaptation mechanism similar to the one in Enterobacteriaceae, which is dependent on the presence of arginine. METHODS: Indeed, speA mRNA and protein expression are acutely induced by acid stress. RESULTS: Moreover, we showed that H. pylori uses arginine in an acid response mechanism required for its growth in acid conditions. CONCLUSION: Altogether, these results provide novel information regarding the H. pylori physiology and acid response mechanism.


Assuntos
Ácidos/toxicidade , Carboxiliases/metabolismo , Tolerância a Medicamentos , Helicobacter pylori/enzimologia , Helicobacter pylori/fisiologia , Carboxiliases/genética , Perfilação da Expressão Gênica , Helicobacter pylori/genética , Homeostase , Humanos , Concentração de Íons de Hidrogênio
12.
Curr Opin Struct Biol ; 88: 102882, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003917

RESUMO

Adopting computational tools for analyzing extensive biological datasets has profoundly transformed our understanding and interpretation of biological phenomena. Innovative platforms have emerged, providing automated analysis to unravel essential insights about proteins and the complexities of their interactions. These computational advancements align with traditional studies, which employ experimental techniques to discern and quantify physical and functional protein-protein interactions (PPIs). Among these techniques, tandem mass spectrometry is notably recognized for its precision and sensitivity in identifying PPIs. These approaches might serve as important information enabling the identification of PPIs with potential pharmacological significance. This review aims to convey our experience using computational tools for detecting PPI networks and offer an analysis of platforms that facilitate predictions derived from experimental data.

13.
Semin Cell Dev Biol ; 22(2): 153-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20932926

RESUMO

Voltage-gated sodium and potassium channels underlie electrical activity of neurons, and are dynamically regulated by diverse cell signaling pathways that ultimately exert their effects by altering the phosphorylation state of channel subunits. Recent mass spectrometric-based studies have led to a new appreciation of the extent and nature of phosphorylation of these ion channels in mammalian brain. This has allowed for new insights into how neurons dynamically regulate the localization, activity and expression through multisite ion channel phosphorylation.


Assuntos
Encéfalo/metabolismo , Mamíferos/metabolismo , Canais de Potássio/metabolismo , Canais de Sódio/metabolismo , Animais , Humanos , Espectrometria de Massas , Fosforilação , Proteômica
14.
J Biol Chem ; 286(33): 28738-28748, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21712386

RESUMO

Dynamic modulation of ion channel expression, localization, and/or function drives plasticity in intrinsic neuronal excitability. Voltage-gated Kv2.1 potassium channels are constitutively maintained in a highly phosphorylated state in neurons. Increased neuronal activity triggers rapid calcineurin-dependent dephosphorylation, loss of channel clustering, and hyperpolarizing shifts in voltage-dependent activation that homeostatically suppress neuronal excitability. These changes are reversible, such that rephosphorylation occurs after removal of excitatory stimuli. Here, we show that cyclin-dependent kinase 5 (CDK5), a Pro-directed Ser/Thr protein kinase, directly phosphorylates Kv2.1, and determines the constitutive level of Kv2.1 phosphorylation, the rapid increase in Kv2.1 phosphorylation upon acute blockade of neuronal activity, and the recovery of Kv2.1 phosphorylation after stimulus-induced dephosphorylation. We also demonstrate that although the phosphorylation state of Kv2.1 is also shaped by the activity of the PP1 protein phosphatase, the regulation of Kv2.1 phosphorylation by CDK5 is not mediated through the previously described regulation of PP1 activity by CDK5. Together, these studies support a novel role for CDK5 in regulating Kv2.1 channels through direct phosphorylation.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Canal de Potássio Kv1.2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Calcineurina/genética , Calcineurina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Células HEK293 , Humanos , Canal de Potássio Kv1.2/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Fosforilação/fisiologia , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Ratos
15.
Front Med (Lausanne) ; 9: 826218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372407

RESUMO

Purpose: Endothelial damage and angiogenesis are fundamental elements of neovascularisation and fibrosis observed in patients with coronavirus disease 2019 (COVID-19). Here, we aimed to evaluate whether early endothelial and angiogenic biomarkers detection predicts mortality and major cardiovascular events in patients with COVID-19 requiring respiratory support. Methods: Changes in serum syndecan-1, thrombomodulin, and angiogenic factor concentrations were analysed during the first 24 h and 10 days after COVID-19 hospitalisation in patients with high-flow nasal oxygen or mechanical ventilation. Also, we performed an exploratory evaluation of the endothelial migration process induced by COVID-19 in the patients' serum using an endothelial cell culture model. Results: In 43 patients, mean syndecan-1 concentration was 40.96 ± 106.9 ng/mL with a 33.9% increase (49.96 ± 58.1 ng/mL) at day 10. Both increases were significant compared to healthy controls (Kruskal-Wallis p < 0.0001). We observed an increase in thrombomodulin, Angiopoietin-2, human vascular endothelial growth factor (VEGF), and human hepatocyte growth factor (HGF) concentrations during the first 24 h, with a decrease in human tissue inhibitor of metalloproteinases-2 (TIMP-2) that remained after 10 days. An increase in human Interleukin-8 (IL-8) on the 10th day accompanied by high HGF was also noted. The incidence of myocardial injury and pulmonary thromboembolism was 55.8 and 20%, respectively. The incidence of in-hospital deaths was 16.3%. Biomarkers showed differences in severity of COVID-19. Syndecan-1, human platelet-derived growth factor (PDGF), VEGF, and Ang-2 predicted mortality. A multiple logistic regression model with TIMP-2 and PDGF had positive and negative predictive powers of 80.9 and 70%, respectively, for mortality. None of the biomarkers predicted myocardial injury or pulmonary thromboembolism. A proteome profiler array found changes in concentration in a large number of biomarkers of angiogenesis and chemoattractants. Finally, the serum samples from COVID-19 patients increased cell migration compared to that from healthy individuals. Conclusion: We observed that early endothelial and angiogenic biomarkers predicted mortality in patients with COVID-19. Chemoattractants from patients with COVID-19 increase the migration of endothelial cells. Trials are needed for confirmation, as this poses a therapeutic target for SARS-CoV-2.

16.
J Med Chem ; 65(22): 15014-15027, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36378530

RESUMO

Chemical structures of selective blockers of TASK channels contain aromatic groups and amide bonds. Using this rationale, we designed and synthesized a series of compounds based on 3-benzamidobenzoic acid. These compounds block TASK-1 channels by binding to the central cavity. The most active compound is 3-benzoylamino-N-(2-ethyl-phenyl)-benzamide or F3, blocking TASK-1 with an IC50 of 148 nM, showing a reduced inhibition of TASK-3 channels and not a significant effect on different K+ channels. We identified putative F3-binding sites in the TASK-1 channel by molecular modeling studies. Mutation of seven residues to A (I118A, L122A, F125A, Q126A, L232A, I235A, and L239A) markedly decreased the F3-induced inhibition of TASK-1 channels, consistent with the molecular modeling predictions. F3 blocks cell proliferation and viability in the MCF-7 cancer cell line but not in TASK-1 knockdown MCF-7 cells, indicating that it is acting in TASK-1 channels. These results indicated that TASK-1 is necessary to drive proliferation in the MCF-7 cancer cell line.


Assuntos
Neoplasias , Humanos , Relação Estrutura-Atividade , Sítios de Ligação , Proliferação de Células , Modelos Moleculares , Células MCF-7
17.
J Biol Chem ; 285(48): 37150-8, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20884614

RESUMO

Necrosis is associated with an increase in plasma membrane permeability, cell swelling, and loss of membrane integrity with subsequent release of cytoplasmic constituents. Severe redox imbalance by overproduction of reactive oxygen species is one of the main causes of necrosis. Here we demonstrate that H(2)O(2) induces a sustained activity of TRPM4, a Ca(2+)-activated, Ca(2+)-impermeant nonselective cation channel resulting in an increased vulnerability to cell death. In HEK 293 cells overexpressing TRPM4, H(2)O(2) was found to eliminate in a dose-dependent manner TRPM4 desensitization. Site-directed mutagenesis experiments revealed that the Cys(1093) residue is crucial for the H(2)O(2)-mediated loss of desensitization. In HeLa cells, which endogenously express TRPM4, H(2)O(2) elicited necrosis as well as apoptosis. H(2)O(2)-mediated necrosis but not apoptosis was abolished by replacement of external Na(+) ions with sucrose or the non-permeant cation N-methyl-d-glucamine and by knocking down TRPM4 with a shRNA directed against TRPM4. Conversely, transient overexpression of TRPM4 in HeLa cells in which TRPM4 was previously silenced re-established vulnerability to H(2)O(2)-induced necrotic cell death. In addition, HeLa cells exposed to H(2)O(2) displayed an irreversible loss of membrane potential, which was prevented by TRPM4 knockdown.


Assuntos
Apoptose , Peróxido de Hidrogênio/metabolismo , Necrose/metabolismo , Canais de Cátion TRPM/metabolismo , Motivos de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Potenciais da Membrana , Necrose/genética , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética
18.
J Biol Chem ; 285(10): 7566-74, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20056605

RESUMO

Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels are critical for the regulatory volume decrease (RVD) response triggered upon cell swelling. Recent evidence indicates that H(2)O(2) plays an essential role in the activation of these channels and that H(2)O(2) per se activates the channels under isotonic isovolumic conditions. However, a significant difference in the time course for current onset between H(2)O(2)-induced and hypotonicity-mediated VSOR Cl(-) activation is observed. In several cell types, cell swelling induced by hypotonic challenges triggers the release of ATP to the extracellular medium, which in turn, activates purinergic receptors and modulates cell volume regulation. In this study, we have addressed the effect of purinergic receptor activation on H(2)O(2)-induced and hypotonicity-mediated VSOR Cl(-) current activation. Here we show that rat hepatoma cells (HTC) exposed to a 33% hypotonic solution responded by rapidly activating VSOR Cl(-) current and releasing ATP to the extracellular medium. In contrast, cells exposed to 200 microm H(2)O(2) VSOR Cl(-) current onset was significantly slower, and ATP release was not detected. In cells exposed to either 11% hypotonicity or 200 microm H(2)O(2), exogenous addition of ATP in the presence of extracellular Ca(2+) resulted in a decrease in the half-time for VSOR Cl(-) current onset. Conversely, in cells that overexpress a dominant-negative mutant of the ionotropic receptor P2X4 challenged with a 33% hypotonic solution, the half-time for VSOR Cl(-) current onset was significantly slowed down. Our results indicate that, at high hypotonic imbalances, swelling-induced ATP release activates the purinergic receptor P2X4, which in turn modulates the time course of VSOR Cl(-) current onset in a extracellular Ca(2+)-dependent manner.


Assuntos
Tamanho Celular , Canais de Cloreto/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Carcinoma Hepatocelular , Linhagem Celular , Linhagem Celular Tumoral , Canais de Cloreto/genética , Soluções Hipotônicas , Neoplasias Hepáticas , Técnicas de Patch-Clamp , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X4
19.
Biol Res ; 44(3): 277-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22688915

RESUMO

About half of the human population is infected with Helicobacter pylori, a bacterium causing gastritis, peptic ulcer and progression to gastric cancer. Chemotaxis and flagellar motility are required for colonization and persistence of H. pylori in the gastric mucus layer. It is not completely clear which chemical gradients are used by H. pylori to maintain its position. TlpA, a chemotaxis receptor for arginine/ bicarbonate, has been identified. This study aimed to find out whether tlpA gene expression is required for the chemotactic response to arginine/bicarbonate. Wild-type motile H. pylori ATCC 700392 and H. pylori ATCC 43504, a strain having an interrupted tlpA gene, were used. Also, a tlpA-knockout mutant of H. pylori 700392 (H. pylori 700-tlpA::cat) was produced by homologous recombination. Expression of tlpA was assessed by a Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) assay. Chemotaxis was measured as a Relative Chemotaxis Response (RCR) by a modified capillary assay. H. pylori 700392 presented chemotaxis to arginine and sodium bicarbonate. H. pylori 700-tlpA::cat showed neither tlpA gene expression nor chemotaxis towards arginine and bicarbonate. Besides confirming that TlpA is a chemotactic receptor for arginine/bicarbonate in H. pylori, this study showed that tlpA gene expression is required for arginine/bicarbonate chemotaxis.


Assuntos
Arginina/farmacologia , Proteínas de Bactérias/genética , Bicarbonatos/farmacologia , Quimiotaxia/genética , Helicobacter pylori/genética , Proteínas de Membrana/genética , Expressão Gênica , Helicobacter pylori/efeitos dos fármacos , Proteínas Quimiotáticas Aceptoras de Metil , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Ureia/metabolismo
20.
Front Neuroanat ; 15: 643287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994959

RESUMO

TRPM4 is a non-selective cation channel activated by intracellular calcium and permeable to monovalent cations. This channel participates in the control of neuronal firing, neuronal plasticity, and neuronal death. TRPM4 depolarizes dendritic spines and is critical for the induction of NMDA receptor-dependent long-term potentiation in CA1 pyramidal neurons. Despite its functional importance, no subcellular localization or expression during postnatal development has been described in this area. To examine the localization and expression of TRPM4, we performed duplex immunofluorescence and patch-clamp in brain slices at different postnatal ages in C57BL/6J mice. At P0 we found TRPM4 is expressed with a somatic pattern. At P7, P14, and P35, TRPM4 expression extended from the soma to the apical dendrites but was excluded from the axon initial segment. Patch-clamp recordings showed a TRPM4-like current active at the resting membrane potential from P0, which increased throughout the postnatal development. This current was dependent on intracellular Ca2+ (I CAN ) and sensitive to 9-phenanthrol (9-Ph). Inhibiting TRPM4 with 9-Ph hyperpolarized the membrane potential at P14 and P35, with no effect in earlier stages. Together, these results show that TRPM4 is expressed in CA1 pyramidal neurons in the soma and apical dendrites and associated with a TRPM4-like current, which depolarizes the neurons. The expression, localization, and function of TRPM4 throughout postnatal development in the CA1 hippocampal may underlie an important mechanism of control of membrane potential and action potential firing during critical periods of neuronal development, particularly during the establishment of circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA