Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Transgenic Res ; 30(4): 353-379, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34086167

RESUMO

Until recently, our ability to generate allelic diversity in plants was limited to introduction of variants from domesticated and wild species by breeding via uncontrolled recombination or the use of chemical and physical mutagens-processes that are lengthy and costly or lack specificity, respectively. Gene editing provides a faster and more precise way to create new variation, although its application in plants has been dominated by the creation of short insertion and deletion mutations leading to loss of gene function, mostly due to the dependence of editing outcomes on DNA repair pathway choices intrinsic to higher eukaryotes. Other types of edits such as point mutations and precise and pre-designed targeted sequence insertions have rarely been implemented, despite providing means to modulate the expression of target genes or to engineer the function and stability of their protein products. Several advancements have been developed in recent years to facilitate custom editing by regulation of repair pathway choices or by taking advantage of alternative types of DNA repair. We have seen the advent of novel gene editing tools that are independent of DNA double-strand break repair, and methods completely independent of host DNA repair processes are being increasingly explored. With the aim to provide a comprehensive review of the state-of-the-art methodology for allele replacement in plants, I discuss the adoption of these improvements for plant genome engineering.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA , Edição de Genes , Genoma de Planta , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas/genética , Plantas/genética , Endonucleases/genética , Endonucleases/metabolismo , Marcação de Genes
2.
Plant Cell ; 29(6): 1196-1217, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28522548

RESUMO

We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).


Assuntos
Engenharia Genética/métodos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Hordeum/genética , Solanum lycopersicum/genética , RNA de Plantas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Triticum/genética
3.
Plant Biotechnol J ; 16(11): 1918-1927, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29604159

RESUMO

Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Resistência à Doença/genética , Fator de Iniciação Eucariótico 4G/genética , Edição de Genes/métodos , Oryza/genética , Doenças das Plantas/virologia , Tungrovirus , Alelos , Fator de Iniciação Eucariótico 4G/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Oryza/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia
4.
Plant Biotechnol J ; 16(6): 1125-1137, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29087011

RESUMO

Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi-allelic double mutant for the two soya bean paralogous Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ-line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer-like3 gene and the GmHen1a gene was observed in the T0 generation, but these mutations failed to transmit to the T1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole-genome sequencing to reveal a spectrum of non-germ-line-targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Glycine max/genética , Medicago truncatula/genética , Proteínas de Ligação a RNA/genética , RNA/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Medicago truncatula/metabolismo , Mutagênese Sítio-Dirigida , Glycine max/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
5.
Plant Biotechnol J ; 16(7): 1275-1282, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29223136

RESUMO

Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating expression of transformed 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes with various paired amino acid substitutions, we found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants. Using strategies that exploit homologous recombination (HR) and nonhomologous end-joining (NHEJ) DNA repair pathways, we precisely introduced the best-performing allele into the cassava genome, simultaneously creating a promoter swap and dual amino acid substitutions at the endogenous EPSPS locus. Primary EPSPS-edited plants were phenotypically normal, tolerant to high doses of glyphosate, with some free of detectable T-DNA integrations. Our methods demonstrate an editing strategy for creating glyphosate tolerance in crop plants and demonstrate the potential of gene editing for further improvement of cassava.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Manihot/genética , Alelos , Genes de Plantas/genética , Engenharia Genética , Loci Gênicos/genética , Glicina/farmacologia , Manihot/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Glifosato
6.
Plant Physiol ; 170(2): 653-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26668331

RESUMO

We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing.


Assuntos
DNA Ligases/metabolismo , Oryza/enzimologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Ligases/genética , DNA de Plantas/genética , Mutagênese Sítio-Dirigida , Mutação , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
7.
Plant Cell ; 26(1): 151-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24443519

RESUMO

Sequence-specific nucleases enable facile editing of higher eukaryotic genomic DNA; however, targeted modification of plant genomes remains challenging due to ineffective methods for delivering reagents for genome engineering to plant cells. Here, we use geminivirus-based replicons for transient expression of sequence-specific nucleases (zinc-finger nucleases, transcription activator-like effector nucleases, and the clustered, regularly interspaced, short palindromic repeat/Cas system) and delivery of DNA repair templates. In tobacco (Nicotiana tabacum), replicons based on the bean yellow dwarf virus enhanced gene targeting frequencies one to two orders of magnitude over conventional Agrobacterium tumefaciens T-DNA. In addition to the nuclease-mediated DNA double-strand breaks, gene targeting was promoted by replication of the repair template and pleiotropic activity of the geminivirus replication initiator proteins. We demonstrate the feasibility of using geminivirus replicons to generate plants with a desired DNA sequence modification. By adopting a general plant transformation method, plantlets with a desired DNA change were regenerated in <6 weeks. These results, in addition to the large host range of geminiviruses, advocate the use of replicons for plant genome engineering.


Assuntos
Engenharia Genética/métodos , Genoma de Planta , Nicotiana/genética , Replicon , Agrobacterium tumefaciens/genética , Arabidopsis/genética , Quebras de DNA de Cadeia Dupla , DNA Bacteriano , Geminiviridae/genética , Marcação de Genes , Plantas Geneticamente Modificadas/genética , Transformação Genética
8.
Diabetologia ; 57(10): 2103-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24972532

RESUMO

AIMS/HYPOTHESIS: The common sequence variant I148M of the patatin-like phospholipase domain-containing protein 3 gene (PNPLA3) is associated with increased hepatic triacylglycerol (TAG) content, but not with insulin resistance, in humans. The PNPLA3 (I148M) variant was previously reported to alter the specificity of the encoded enzyme and subsequently affect lipid composition. METHODS: We analysed the fatty acid composition of five lipid fractions from liver tissue samples from 52 individuals, including 19 carriers of the minor PNPLA3 (I148M) variant. RESULTS: PNPLA3 (I148M) was associated with a strong increase (1.75-fold) in liver TAGs, but with no change in other lipid fractions. PNPLA3 (I148M) minor allele carriers had an increased n-3 polyunsaturated fatty acid (PUFA) α-linolenic acid content and reductions in several n-6 PUFAs in the liver TAG fraction. Furthermore, there was a strong inverse correlation between n-6 PUFA and TAG content independent of PNPLA3 genotype. In a multivariate model including liver fat content, PNPLA3 genotype and fatty acid composition, two significant differences could be exclusively attributed to the PNPLA3 (I148M) minor allele: reduced stearic acid and increased α-linolenic acid content in the hepatic TAG fraction. CONCLUSIONS: These changes therefore suggest a mechanism to explain the PNPLA3 (I148M)-dependent increase in liver fat content without causing insulin resistance. Stearic acid can induce insulin resistance, whereas α-linolenic acid may protect against it.


Assuntos
Lipase/genética , Fígado/metabolismo , Proteínas de Membrana/genética , Ácidos Graxos Insaturados/metabolismo , Genótipo , Humanos , Ácidos Linolênicos/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Triglicerídeos/metabolismo
9.
New Phytol ; 202(2): 662-678, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24456522

RESUMO

Some transposable elements (TEs) show extraordinary variance in abundance along sex chromosomes but the mechanisms responsible for this variance are unknown. Here, we studied Ogre long terminal repeat (LTR) retrotransposons in Silene latifolia, a dioecious plant with evolutionarily young heteromorphic sex chromosomes. Ogre elements are ubiquitous in the S. latifolia genome but surprisingly absent on the Y chromosome. Bacterial artificial chromosome (BAC) library analysis and fluorescence in situ hybridization (FISH) were used to determine Ogre structure and chromosomal localization. Next generation sequencing (NGS) data were analysed to assess the transcription level and abundance of small RNAs. Methylation of Ogres was determined by bisulphite sequencing. Phylogenetic analysis was used to determine mobilization time and selection forces acting on Ogre elements. We characterized three Ogre families ubiquitous in the S. latifolia genome. One family is nearly absent on the Y chromosome despite all the families having similar structures and spreading mechanisms. We showed that Ogre retrotransposons evolved before sex chromosomes appeared but were mobilized after formation of the Y chromosome. Our data suggest that the absence of one Ogre family on the Y chromosome may be caused by 24-nucleotide (24-nt) small RNA-mediated silencing leading to female-specific spreading. Our findings highlight epigenetic silencing mechanisms as potentially crucial factors in sex-specific spreading of some TEs, but other possible mechanisms are also discussed.


Assuntos
Cromossomos de Plantas , DNA de Plantas , Evolução Molecular , Genoma de Planta , Retroelementos , Silene/genética , Sequências Repetidas Terminais , Sequência de Bases , Epigênese Genética , Inativação Gênica , Dados de Sequência Molecular , Filogenia , RNA de Plantas
10.
Nucleic Acids Res ; 39(12): e82, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21493687

RESUMO

TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagents for efficiently assembling TALEN constructs with custom repeat arrays. We also describe design guidelines based on naturally occurring TAL effectors and their binding sites. Using software that applies these guidelines, in nine genes from plants, animals and protists, we found candidate cleavage sites on average every 35 bp. Each of 15 sites selected from this set was cleaved in a yeast-based assay with TALEN pairs constructed with our reagents. We used two of the TALEN pairs to mutate HPRT1 in human cells and ADH1 in Arabidopsis thaliana protoplasts. Our reagents include a plasmid construct for making custom TAL effectors and one for TAL effector fusions to additional proteins of interest. Using the former, we constructed de novo a functional analog of AvrHah1 of Xanthomonas gardneri. The complete plasmid set is available through the non-profit repository AddGene and a web-based version of our software is freely accessible online.


Assuntos
Proteínas de Ligação a DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Marcação de Genes , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Clivagem do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Humanos , Dados de Sequência Molecular , Mutagênese , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos , Software , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Xanthomonas/genética
11.
Methods Mol Biol ; 2264: 219-244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33263914

RESUMO

For centuries, combining useful traits into a single tomato plant has been done by selective crossbreeding that resulted in hundreds of extant modern cultivars. However, crossbreeding is a labor-intensive process that requires between 5 and 7 years to develop a new variety. More recently, genome editing with the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has been established as an efficient method to accelerate the breeding process by introducing targeted modifications to plant genomes via generation of targeted double-strand breaks (DSBs). CRISPR/Cas9 has been used to generate a variety of specific changes ranging from gene knockouts to gene replacements, and can also be easily multiplexed to modify several targets simultaneously. Given that (1) generating knockout mutations only requires a DSB that is frequently repaired by the error-prone nonhomologous end joining (NHEJ) pathway resulting in gene function inactivation, and (2) the genetic basis of many useful agronomic traits consists of loss of gene function, multiple traits can be created in a plant in one generation by simultaneously introducing DSBs into multiple genes of interest. On the other hand, more precise modifications, such as allele replacement, can be achieved by gene targeting-a less efficient process in which an external template is used to repair the DSB by homologous recombination (HR). These technical breakthroughs allow the design and customization of plant traits to achieve the ideal plant type ("ideotype"). Here, we describe protocols to assemble CRISPR/Cas9 constructs for both single and multiplex gene knockouts as well as gene targeting and to generate and identify genome-edited tomato plants via Agrobacterium-mediated transformation in tissue culture.


Assuntos
Agrobacterium/genética , Sistemas CRISPR-Cas , Edição de Genes , Marcação de Genes , Genoma de Planta , Solanum lycopersicum/genética , Transformação Genética , Vetores Genéticos , Solanum lycopersicum/crescimento & desenvolvimento
12.
Chromosome Res ; 16(7): 961-76, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18853265

RESUMO

We carried out a global survey of all major types of transposable elements in Silene latifolia, a model species with sex chromosomes that are in the early stages of their evolution. A shotgun genomic library was screened with genomic DNA to isolate and characterize the most abundant elements. We found that the most common types of elements were the subtelomeric tandem repeat X-43.1 and Gypsy retrotransposons, followed by Copia retrotransposons and LINE non-LTR elements. SINE elements and DNA transposons were less abundant. We also amplified transposable elements with degenerate primers and used them to screen the library. The localization of elements by FISH revealed that most of the Copia elements were accumulated on the Y chromosome. Surprisingly, one type of Gypsy element, which was similar to Ogre elements known from legumes, was almost absent on the Y chromosome but otherwise uniformly distributed on all chromosomes. Other types of elements were ubiquitous on all chromosomes. Moreover, we isolated and characterized two new tandem repeats. One of them, STAR-C, was localized at the centromeres of all chromosomes except the Y chromosome, where it was present on the p-arm. Its variant, STAR-Y, carrying a small deletion, was specifically localized on the q-arm of the Y chromosome. The second tandem repeat, TR1, co-localized with the 45S rDNA cluster in the subtelomeres of five pairs of autosomes. FISH analysis of other Silene species revealed that some elements (e.g., Ogre-like elements) are confined to the section Elisanthe while others (e.g. Copia or Athila-like elements) are present also in more distant species. Similarly, the centromeric satellite STAR-C was conserved in the genus Silene whereas the subtelomeric satellite X-43.1 was specific for Elisanthe section. Altogether, our data provide an overview of the repetitive sequences in Silene latifolia and revealed that genomic distribution and evolutionary dynamics differ among various repetitive elements. The unique pattern of repeat distribution is found on the Y chromosome, where some elements are accumulated while other elements are conspicuously absent, which probably reflects different forces shaping the Y chromosome.


Assuntos
Cromossomos de Plantas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Silene/genética , Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Hibridização in Situ Fluorescente , Silene/classificação , Especificidade da Espécie , Sequências de Repetição em Tandem/genética
13.
N Biotechnol ; 48: 20-28, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29656128

RESUMO

Silene latifolia serves as a model species to study dioecy, the evolution of sex chromosomes, dosage compensation and sex-determination systems in plants. Currently, no protocol for genetic transformation is available for this species, mainly because S. latifolia is considered recalcitrant to in vitro regeneration and infection with Agrobacterium tumefaciens. Using cytokinins and their synthetic derivatives, we markedly improved the efficiency of regeneration. Several agrobacterial strains were tested for their ability to deliver DNA into S. latifolia tissues leading to transient and stable expression of the GUS reporter. The use of Agrobacterium rhizogenes strains resulted in the highest transformation efficiency (up to 4.7% of stable transformants) in hairy root cultures. Phenotypic and genotypic analyses of the T1 generation suggested that the majority of transformation events contain a small number of independent T-DNA insertions and the transgenes are transmitted to the progeny in a Mendelian pattern of inheritance. In short, we report an efficient and reproducible protocol for leaf disc transformation and subsequent plant regeneration in S. latifolia, based on the unique combination of infection with A. rhizogenes and plant regeneration from hairy root cultures using synthetic cytokinins. A protocol for the transient transformation of S.latifolia protoplasts was also developed and applied to demonstrate the possibility of targeted mutagenesis of the sex linked gene SlAP3 by TALENs and CRISPR/Cas9.


Assuntos
Agrobacterium/genética , Silene/genética , Silene/microbiologia , Transformação Genética , Sistemas CRISPR-Cas , Cromossomos de Plantas/genética , DNA Bacteriano/genética , Evolução Molecular , Expressão Gênica , Genes Reporter , Técnicas Genéticas , Modelos Genéticos , Plantas Geneticamente Modificadas , Regeneração/genética , Silene/fisiologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
14.
Nat Biotechnol ; 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272678

RESUMO

Breeding of crops over millennia for yield and productivity has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost. We devised a CRISPR-Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants.

15.
Methods Mol Biol ; 1679: 187-212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28913802

RESUMO

Advances in cereal transformation along with the completion of the wheat genome sequence assembly have increased the demand for tools that perform targeted and specific modifications in this crop plant. This protocol demonstrates the construction of reagents using a comprehensive genome engineering kit to create single and multiple gene "knockouts," site-specific chromosome deletions and gene replacement or "knockins" including the use of geminivirus replicons (GVRs). The reagents allow for both easy construction of simple genome engineering vectors, and "mix and match" swapping of components such as the Cas9, guide RNA and donor template cassettes for gene targeting. In addition, a web-based tool greatly streamlines vector selection, primer design, and vector construction.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Marcação de Genes , Triticum/genética , Deleção Cromossômica , Edição de Genes , Marcação de Genes/métodos , Engenharia Genética , Vetores Genéticos/genética
16.
Plant Sci ; 256: 120-130, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28167025

RESUMO

The ideotype is a theoretical model of an archetypal cultivated plant. Recent progress in genome editing is aiding the pursuit of this ideal in crop breeding. Breeding is relatively straightforward when the traits in question are monogenic in nature and show Mendelian inheritance. Conversely, traits with a diffuse, polygenic basis such as abiotic stress resistance are more difficult to harness. In recent years, many genes have been identified that are important for plant domestication and act by increasing yield, grain or fruit size or altering plant architecture. Here, we propose that (a) key monogenic traits whose physiology has been unveiled can be molecularly tailored to achieve the ideotype; and (b) wild relatives of crops harboring polygenic stress resistance genes or other traits of interest could be de novo domesticated by manipulating monogenic yield-related traits through state-of-the-art gene editing techniques. An overview of the genomic and physiological challenges in the world's main staple crops is provided. We focus on tomato and its wild Solanum (section Lycopersicon) relatives as a suitable model for molecular design in the pursuit of the ideotype for elite cultivars and to test de novo domestication of wild relatives.


Assuntos
Produtos Agrícolas/genética , Domesticação , Edição de Genes , Genes de Plantas , Genoma de Planta , Plantas Geneticamente Modificadas , Solanum lycopersicum/genética , Agricultura , Cruzamento , Sistemas CRISPR-Cas , Frutas , Genômica , Herança Multifatorial , Locos de Características Quantitativas
17.
Methods Mol Biol ; 1239: 133-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25408404

RESUMO

An important breakthrough in the field of genome engineering was the discovery of the modular Transcription Activator-Like Effector (TALE) DNA binding domain and the development of TALE nucleases (TALENs). TALENs enable researchers to make DNA double-strand breaks in target loci to create gene knockouts or introduce specific DNA sequence modifications. Precise genome engineering is increasingly being used to study gene function, develop disease models or create new traits in crop species. Underlying the boom in genome engineering is the striking simplicity and low cost of engineering new specificities of TALENs and other sequence-specific nucleases. In this chapter, we describe a rapid, inexpensive, and user-friendly protocol for custom TALEN construction based on one of the most popular TALEN assembly platforms, the Golden Gate cloning method. Using this protocol, ready-to-use TALENs with specificity for targets 13-32 bp long are constructed within 5 days.


Assuntos
Endonucleases/genética , Endonucleases/metabolismo , Engenharia Genética/métodos , Vetores Genéticos/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Domínios e Motivos de Interação entre Proteínas , Clonagem Molecular/métodos , Endonucleases/química , Biblioteca Gênica , Marcação de Genes , Proteínas de Homeodomínio/química , Recombinação Homóloga
18.
Genome Biol ; 16: 232, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541286

RESUMO

BACKGROUND: The use of homologous recombination to precisely modify plant genomes has been challenging, due to the lack of efficient methods for delivering DNA repair templates to plant cells. Even with the advent of sequence-specific nucleases, which stimulate homologous recombination at predefined genomic sites by creating targeted DNA double-strand breaks, there are only a handful of studies that report precise editing of endogenous genes in crop plants. More efficient methods are needed to modify plant genomes through homologous recombination, ideally without randomly integrating foreign DNA. RESULTS: Here, we use geminivirus replicons to create heritable modifications to the tomato genome at frequencies tenfold higher than traditional methods of DNA delivery (i.e., Agrobacterium). A strong promoter was inserted upstream of a gene controlling anthocyanin biosynthesis, resulting in overexpression and ectopic accumulation of pigments in tomato tissues. More than two-thirds of the insertions were precise, and had no unanticipated sequence modifications. Both TALENs and CRISPR/Cas9 achieved gene targeting at similar efficiencies. Further, the targeted modification was transmitted to progeny in a Mendelian fashion. Even though donor molecules were replicated in the vectors, no evidence was found of persistent extra-chromosomal replicons or off-target integration of T-DNA or replicon sequences. CONCLUSIONS: High-frequency, precise modification of the tomato genome was achieved using geminivirus replicons, suggesting that these vectors can overcome the efficiency barrier that has made gene targeting in plants challenging. This work provides a foundation for efficient genome editing of crop genomes without the random integration of foreign DNA.


Assuntos
Sistemas CRISPR-Cas/genética , Genoma de Planta , Recombinação Homóloga/genética , Solanum lycopersicum/genética , Antocianinas/biossíntese , Antocianinas/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Bacteriano/genética , Geminiviridae/genética , Marcação de Genes , Engenharia Genética
19.
J Vis Exp ; (86)2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24747757

RESUMO

Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.


Assuntos
Blastocisto/fisiologia , Endonucleases/metabolismo , Engenharia Genética/métodos , Genômica/métodos , Animais , Reparo do DNA por Junção de Extremidades , Endonucleases/química , Endonucleases/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microinjeções , Oócitos/fisiologia , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA