Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 19(10): e1010776, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871041

RESUMO

Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.


Assuntos
Fabaceae , Sinorhizobium meliloti , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Fabaceae/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiose/genética , Endopeptidases/genética , Transdução de Sinais/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos
2.
Mol Microbiol ; 116(3): 926-942, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34212439

RESUMO

Sulfur is in cellular components of bacteria and is, therefore, an element necessary for growth. However, mechanisms by which bacteria satisfy their sulfur needs within a host are poorly understood. Vibrio fischeri is a bacterial symbiont that colonizes, grows, and produces bioluminescence within the light organ of the Hawaiian bobtail squid, which provides an experimental platform for investigating sulfur acquisition in vivo. Like other γ-proteobacteria, V. fischeri fuels sulfur-dependent anabolic processes with intracellular cysteine. Within the light organ, the abundance of a ΔcysK mutant, which cannot synthesize cysteine through sulfate assimilation, is attenuated, suggesting sulfate import is necessary for V. fischeri to establish symbiosis. Genes encoding sulfate-import systems of other bacteria that assimilate sulfate were not identified in the V. fischeri genome. A transposon mutagenesis screen implicated YfbS as a sulfate importer. YfbS is necessary for growth on sulfate and in the marine environment. During symbiosis, a ΔyfbS mutant is attenuated and strongly expresses sulfate-assimilation genes, which is a phenotype associated with sulfur-starved cells. Together, these results suggest V. fischeri imports sulfate via YfbS within the squid light organ, which provides insight into the molecular mechanisms by which bacteria harvest sulfur in vivo.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Proteínas de Membrana Transportadoras/genética , Sulfatos/metabolismo , Enxofre/metabolismo , Simbiose , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cisteína/metabolismo , Interações entre Hospedeiro e Microrganismos , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese , Mutação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA