RESUMO
Human Health relies on Environmental Health, we thus must assess the environmental impact of healthcare systems. Life cycle analysis (LCA) quantifies the impacts on : human health, climate change, ecosystems and resources. This technique allows for evaluation of the environmental impacts of objects or processes. This article assessed the LCA of three medical cups to identify their specific strengths and weaknesses.
La santé humaine dépend largement de la santé environnementale, il est donc crucial d'évaluer l'impact environnemental des systèmes de santé eux-mêmes. L'analyse de cycle de vie (ACV) évalue et compare les impacts de produits ou processus sur : la santé humaine, le changement climatique, les écosystèmes et les ressources. Cet article présente l'ACV de trois modèles de gobelets à médicaments, identifiant les avantages et faiblesses de chacun.
Assuntos
Ecossistema , Meio Ambiente , Humanos , Animais , Saúde Ambiental , Mudança Climática , Estágios do Ciclo de VidaRESUMO
A weakness of standard testing procedures is that they do not consider interactions between organisms, and they focus only on single species. Furthermore, these procedures do not take into account pulse exposure. However, pulse exposure is of particular importance because in streams, after crop application and during and after precipitation, herbicide concentrations fluctuate widely and can exceed the Annual Average Environmental Quality Standards (AA-EQS), which aim to protect the aquatic environment. The sensitivity of the algae Scenedesmus vacuolatus and Pseudokirchneriella subcapitata in a co-culture exposed to pulses is thus analysed in this study. As a first step, the growths of the algae in co-culture are investigated. For initial cell densities fixed, respectively, to 100,000 and 50,000 cells/mL, the growth of each alga is exponential over at least 48 h. S. vacuolatus seems to influence the growth of P. subcapitata negatively. Allelopathy is a possible explanation for this growth inhibition. The toxicity of the herbicide isoproturon is later tested on the algae S. vacuolatus and P. subcapitata cultured alone and in the co-culture. Despite the supplementary stress on the algae in the co-culture competing for nutrients, the toxicity of the herbicide is lower for the two algae when they are in the co-culture than when they are in separated culture. A model is adapted and used to predict the cell-density inhibition on the alga S. vacuolatus in the co-culture with the alga P. subcapitata exposed to a pulse concentration of isoproturon. Four laboratory experiments are performed to validate the model. The comparison between the laboratory and the modelled effects shows good agreement. The differences can be considered minor most of time. For future studies, it is important to ensure that the cell count is precise, as it is used to determine the parameters of the model. The differences can be also induced by the fact that the cell number of the alga P. subcapitata re-suspended in a new OECD medium after the centrifugation process cannot be fixed.
Assuntos
Herbicidas/toxicidade , Scenedesmus/efeitos dos fármacos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Técnicas de Cocultura , Modelos Biológicos , Compostos de FenilureiaRESUMO
Among pollutants released into the environment by human activities, residues of pharmaceuticals are an increasing matter of concern because of their potential impact on ecosystems. The aim of this study was to analyze differences of protein expression resulting from acute (2 days) and middle-term (7 days) exposure of aquatic microcrustacean Daphnia pulex to the anticancer drug tamoxifen. Using a liquid chromatography-mass spectrometry shotgun approach, about 4000 proteins could be identified, providing the largest proteomics data set of D. pulex published up to now. Considering both time points and tested concentrations, 189 proteins showed a significant fold change. The identity of regulated proteins suggested a decrease in translation, an increase in protein degradation and changes in carbohydrate and lipid metabolism as the major effects of the drug. Besides these impacted processes, which reflect a general stress response of the organism, some other regulated proteins play a role in Daphnia reproduction. These latter results are in accordance with our previous observations of the impact of tamoxifen on D. pulex reproduction and illustrate the potential of ecotoxicoproteomics to unravel links between xenobiotic effects at the biochemical and organismal levels. Data are available via ProteomeXchange with identifier PXD001257.
Assuntos
Daphnia/efeitos dos fármacos , Daphnia/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteômica/métodos , Tamoxifeno/toxicidade , Xenobióticos/toxicidade , Animais , Cromatografia Líquida , Daphnia/genética , Ecotoxicologia/métodos , Espectrometria de Massas em Tandem , Fatores de TempoRESUMO
Herbicide concentrations fluctuate widely in watercourses after crop applications and rain events. The level of concentrations in pulses can exceed the water chronic quality criteria. In the present study, we proposed modelling the effects of successive pulse exposure on algae. The deterministic model proposed is based on two parameters: (i) the typical growth rate of the algae, obtained by monitoring growth rates of several successive batch cultures in growth media, characterizing both the growth of the control and during the recovery periods; (ii) the growth rate of the algae exposed to pulses, determined from a dose-response curve obtained with a standard toxicity test. We focused on the herbicide isoproturon and on the freshwater alga Scenedesmus vacuolatus, and we validated the model prediction based on effect measured during five sequential pulse exposures in laboratory. The comparison between the laboratory and the modelled effects illustrated that the results yielded were consistent, making the model suitable for effect prediction of the herbicide photosystem II inhibitor isoproturon on the alga S. vacuolatus. More generally, modelling showed that both pulse duration and level of concentration play a crucial role. The application of the model to a real case demonstrated that both the highest peaks and the low peaks with a long duration affect principally the cell density inhibition of the alga S. vacuolatus. It is therefore essential to detect these characteristic pulses when monitoring of herbicide concentrations are conducted in rivers.
Assuntos
Herbicidas/toxicidade , Modelos Biológicos , Compostos de Fenilureia/toxicidade , Scenedesmus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Contagem de Células , Água Doce , Rios , Scenedesmus/crescimento & desenvolvimento , Testes de ToxicidadeRESUMO
The important number of active pharmaceutical ingredients (API) available on the market along with their potential adverse effects in the aquatic ecosystems, lead to the development of prioritization methods, which allow choosing priority molecules to monitor based on a set of selected criteria. Due to the large volumes of API used in hospitals, an increasing attention has been recently paid to their effluents as a source of environmental pollution. Based on the consumption data of a Swiss university hospital, about hundred of API has been prioritized following an OPBT approach (Occurrence, Persistence, Bioaccumulation and Toxicity). In addition, an Environmental Risk Assessment (ERA) allowed prioritizing API based on predicted concentrations and environmental toxicity data found in the literature for 71 compounds. Both prioritization approaches were compared. OPBT prioritization results highlight the high concern of some non steroidal anti-inflammatory drugs and antiviral drugs, whereas antibiotics are revealed by ERA as potentially problematic to the aquatic ecosystems. Nevertheless, according to the predicted risk quotient, only the hospital fraction of ciprofloxacin represents a risk to the aquatic organisms. Some compounds were highlighted as high-priority with both methods: ibuprofen, trimethoprim, sulfamethoxazole, ritonavir, gabapentin, amoxicillin, ciprofloxacin, raltegravir, propofol, etc. Analyzing consumption data and building prioritization lists helped choosing about 15 API to be monitored in hospital wastewaters. The API ranking approach adopted in this study can be easily transposed to any other hospitals, which have the will to look at the contamination of their effluents.
Assuntos
Monitoramento Ambiental/métodos , Preparações Farmacêuticas/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Hospitais , Humanos , Medição de RiscoRESUMO
Seasonal changes in the structure and composition of a benthic microalgal community may lead to different responses to herbicide contamination during different seasons. Consequently, the thresholds derived from risk assessment tools such as species sensitivity distributions (SSDs) must allow for these changes. We built a single-substance SSD for each of four herbicides (atrazine, terbutryn, diuron and isoproturon), which was specific to the sensitivity of the benthic diatoms found in Lake Geneva, in order to derive protective thresholds for a mixture of these four herbicides using the concentration addition model. We then investigated (1) the structural parameters of a Lake Geneva benthic microalgal community during two contrasting seasons (summer 2012 and winter 2013), (2) the response of these communities to a herbicide mixture, and (3) the protective levels of the thresholds derived. The winter community was characterized by having greater biomass, diatom species richness, and diversity metrics, and lower non-diatom species richness than the summer community. The differences in the diatom communities composition in these seasons appeared to be primarily driven by the environmental nitrate concentrations and the temperature. Moreover, the species in the winter community were more resistant to herbicides than those found in the summer community. Consequently, the protective threshold for this herbicide mixture obtained in this study was in fact protective for the winter community, but not for the summer community based on their structural parameters. Thus, the protective level against herbicides of the threshold for the benthic microalgal community should take into account changes in the environmental physico-chemical conditions that strongly influence the structure and composition of the community. The fact that the succession of species over time (i.e., over the seasons) is difficult to predict introduces uncertainties into the estimation of protective thresholds and questions their applicability year round.
Assuntos
Herbicidas/toxicidade , Lagos/química , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biodiversidade , Monitoramento Ambiental , Herbicidas/análise , Microalgas/classificação , Estações do Ano , Poluentes Químicos da Água/análiseRESUMO
Environmental risk assessment of chemical contaminants requires prioritizing of substances taken up by biota as it is a starting point for potential adverse effects. Although knowledge about the occurrence of known chemical pollutants in aquatic organisms has significantly improved during the last decade, there is still a poor understanding for a broad range of more polar compounds. To tackle this issue, we proposed an approach that identifies bioaccumulative and biomagnifiable polar chemicals using liquid chromatography coupled with electrospray ionization to high resolution tandem mass spectrometry (LC-HRMS/MS) and combine it with trend analysis using hierarchical clustering. As a proof-of-concept, this approach was implemented on various organisms and compartments (sediment, litter leaves, periphytic biofilm, invertebrates and fish) collected from a small urban river. HRMS/MS data measured via data-independent acquisition mode were retrospectively analysed using two analytical strategies: (1) retrospective target and (2) suspect/non-target screening. In the retrospective target analysis, 56 of 361 substances spanning a broad range of contaminant classes were detected (i.e. 26 in fish, 18 in macroinvertebrates, 28 in leaves, 29 in periphyton and 32 in sediments, with only 7 common to all compartments), among which 49 could be quantified using reference standards. The suspect screening approach based on two suspect lists (in-house, Norman SusDat) led to the confirmation of 5 compounds with standards (three xenobiotics at level 1 and two lipids at level 2) and tentative identification of seven industrial or natural chemicals at level 2 and 3 through a mass spectra library match. Overall, this proof-of-concept study provided a more comprehensive picture of the exposure of biota to emerging contaminants (i.e., the internal chemical exposome) and potential bioaccumulation or biomagnification of polar compounds along the trophic chain.
Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Estudos Retrospectivos , Monitoramento Ambiental/métodos , Espectrometria de Massas em Tandem , Compostos Orgânicos/análise , Cromatografia Líquida , Poluentes Químicos da Água/análiseRESUMO
An analytical method for the quantification of the widely used herbicide, glyphosate, its main by-product, aminomethylphosphonic acid (AMPA) and the herbicide glufosinate at trace level was developed and tested in different aqueous matrices. Their derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was done prior to their concentration and purification by solid phase extraction. The concentrated derivates were then analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Spiking tests at three different concentrations were realized in several water matrices: ultrapure water, Evian(©) mineral water, river water, soil solution and runoff water of a vineyard. Except for AMPA in runoff water, obtained regression curves for all matrices of interest showed no statistical differences of their slopes and intercepts, validating the method for the matrix effect correction in relevant environmental samples. The limits of detection and quantification of the method were as low as 5 and 10 ng/l respectively for the three compounds. Spiked Evian(©) and river water samples at two different concentrations (30 and 130 ng/l) showed mean recoveries between 86 and 109%, and between 90 and 133% respectively. Calibration curves established in spiked Evian(©) water samples between 10 and 1000 ng/l showed r(2) values above 0.989. Monitoring of a typical vineyard river showed peaks of pollution by glyphosate and AMPA during main rain events, sometimes above the legal threshold of 100 ng/l, suggesting the diffuse export of these compounds by surface runoff. The depth profile sampled in the adjacent lake near a waste water treatment plant outlet showed a concentration peak of AMPA at 25m depth, indicating its release with treated urban wastewater.
Assuntos
Cromatografia Líquida/métodos , Glicina/análogos & derivados , Herbicidas/análise , Organofosfonatos/análise , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Glicina/análise , Isoxazóis , Rios/química , Suíça , Tetrazóis , GlifosatoRESUMO
Neurotoxic pesticides are used worldwide to protect crops from insects; they are recognized to impact nontarget organisms that live in areas surrounded by treated crops. Many biochemical and cell-based solutions have been developed for testing insecticide neurotoxicity. Nevertheless, such solutions provide a partial assessment of the impact of neurotoxicity, neglecting important phenotypic components such as behavior. Behavior is the apical endpoint altered by neurotoxicity, and scientists are increasingly recommending including behavioral endpoints in available tests or developing new methods for assessing contaminant-induced behavioral changes. In the present study, we extended an existing protocol (the amphibian short-term assay) with a behavioral test. To this purpose, we developed a homemade device along with an open-source computing solution for tracking trajectories of Xenopus laevis tadpoles exposed to two organophosphates insecticides (OPIs), diazinon (DZN) and chlorpyrifos (CPF). The data resulting from the tracking were then analyzed, and the impact of exposure to DZN and CPF was tested on speed- and direction-related components. Our results demonstrate weak impacts of DZN on the behavioral components, while CPF demonstrated strong effects, notably on speed-related components. Our results also suggest a time-dependent alteration of behavior by CPF, with the highest impacts at day 6 and an absence of impact at day 8. Although only two OPIs were tested, we argue that our solution coupled with biochemical biomarkers is promising for testing the neurotoxicity of this pesticide group on amphibians. Environ Toxicol Chem 2023;42:1595-1606. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Assuntos
Clorpirifos , Praguicidas , Clorpirifos/toxicidade , Diazinon/toxicidade , Ecotoxicologia , Inseticidas/toxicidade , Praguicidas/toxicidadeRESUMO
Mixture risk assessment predictions have rarely been confronted with biological changes observed in the environment. In this study, long-term monitoring of a European great lake, Lake Geneva, provides the opportunity to assess to what extent the predicted toxicity of herbicide mixtures explains the changes in the composition of the phytoplankton community next to other classical limnology parameters such as nutrients. To reach this goal, the gradient of the mixture toxicity of 14 herbicides regularly detected in the lake was calculated using concentration addition and response addition models. A temporal gradient of toxicity was observed which decreased from 2004 to 2009. Redundancy analysis and partial redundancy analysis showed that this gradient explains a significant portion of the variation in phytoplankton community composition with and without having removed the effect of all other co-variables. Moreover, species that are significantly influenced, positively or negatively, by the decrease of toxicity in the lake over time are highlighted. It can be concluded that the herbicide mixture toxicity is one of the key parameters to explain phytoplankton changes in Lake Geneva.
Assuntos
Biota , Exposição Ambiental , Herbicidas/toxicidade , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Cadeia Alimentar , Herbicidas/análise , Lagos , Modelos Biológicos , Fósforo/análise , Fósforo/metabolismo , Fitoplâncton/fisiologia , Medição de Risco , Especificidade da Espécie , Suíça , Temperatura , Fatores de Tempo , Poluentes Químicos da Água/análiseRESUMO
Many pharmaceutical products find their way into receiving waters, giving rise to concerns regarding their environmental impact. A procedure was proposed that enables ranking of the hazard to aquatic species and human health due to such products. In the procedure, hazard assessment is based on five of the pharmaceutical product's individual physico-chemical properties. These properties are aggregated using the weighted Euclidian distance as the utility function. The weights and physico-chemical properties are considered as random variables. Physico-chemical property uncertainty criteria are obtained from a literature review. Weight uncertainty is based on a hazard ranking from a panel of experts, the histogram of which is converted into a continuous probability density function using statistical Kernel smoothing technique. The hazard-ranking procedure was applied to a list of common pharmaceuticals used in Switzerland. The procedure is target-specific. Two rankings were presented: One giving priority to environmental protection and the other to human health. For most substances, the hazard rank depends on the target. For the Swiss case study, the ranking procedure led to the conclusion that the hormones ethinylestradiol and testosterone, along with the antibiotic erythromycin A, should be in all cases included in risk-assessment methodologies, environmental concentration estimates and regular measurement campaigns. The methodology proposed is flexible and can be extrapolated to other substances and groups of experts.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/classificação , Preparações Farmacêuticas , Poluentes Químicos da Água , Ecossistema , Humanos , Medição de Risco/métodos , IncertezaRESUMO
Amphibia is the most threatened class among vertebrates, with >40% of the species threatened with extinction. Pollution is thought to alter amphibian population dynamics. With the growing interest in behavioral ecotoxicology, the neurotoxic organophosphate pesticides are of special concern. Understanding how exposure to neurotoxics leads to behavioral alterations is of crucial importance, and mechanistic endpoints should be included in ecotoxicological methods. In the present study, we tested an 8-day assay to evaluate the toxicity of two organophosphates, diazinon and chlorpyrifos, on Xenopus laevis, that is, on biochemical, morphological, and life-history traits related to locomotion capacities. The method involves measuring biomarkers such as glutathione-S-transferase (GST) and ethoxyresorufin-O-deethylase (EROD; two indicators of the detoxifying system) in the 8-day-old larvae as well as acetylcholinesterase (AChE) activity (involved in the nervous system) in 4-day-old embryos and 8-day-old larvae. Snout-to-vent length and snout-to-tail length of 4-day-old embryos and 8-day larvae were recorded as well as the corresponding growth rate. Fin and tail muscle widths were measured as well for testing changes in tail shape. Both tests showed effects of both organophosphates on AChE activity; however, no changes were observed in GST and EROD. Furthermore, exposure to chlorpyrifos demonstrated impacts on morphological and life-history traits, presaging alteration of locomotor traits. In addition, the results suggest a lower sensitivity to chlorpyrifos of 4-day-old embryos compared to 8-day-old larvae. Tests on other organophosphates are needed to test the validity of this method for the whole organophosphate group. Environ Toxicol Chem 2022;41:2688-2699. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Assuntos
Clorpirifos , Inseticidas , Animais , Clorpirifos/toxicidade , Diazinon/toxicidade , Ecotoxicologia , Acetilcolinesterase , Citocromo P-450 CYP1A1 , Inseticidas/toxicidade , Compostos Organofosforados/toxicidade , Xenopus laevis , Larva , Transferases , GlutationaRESUMO
The cytochromes P450 (CYP450) represent a major enzyme family operating mostly in the first step of xenobiotic detoxification in aquatic organisms. The ability to measure these CYP450 enzymes' activities provides a crucial tool to understand organisms' response to chemical stressors. However, research on CYP450 activity measurement is still limited and has had variable success. In the present study, we optimize, compile, and compare existing scientific information and techniques for a series of CYP450 biomarkers (EROD, MROD, ECOD, APND, and ERND) used on Daphnia magna. Additionally, we explored these CYP450 biomarkers' activities through the first 5 days of life of daphnids, providing a link between their age and sensitivity to chemicals. In the experiment, daphnids were exposed to an organophosphate pesticide (diazinon) from birth to measure the molecular response of the detoxification process. Our results suggest EROD as the most applicable biomarker for organisms such as D. magna, with a higher organophosphate detoxification rate in daphnids that are 2 and 5 days old. Additionally, a larger body size allowed a more accurate EROD measurement; hence, we emphasize the use of 5-day-old daphnids when analyzing their detoxification response.
RESUMO
Global anthropogenic environmental degradations such as climate change are increasingly recognized as critical public health issues, on which human beings should urgently act in order to preserve sustainable conditions of living on Earth. "Planetary Health" is a breakthrough concept and emerging research field based on the recognition of the interdependent relationships between living organisms-both human and non-human-and their ecosystems. In that regards, there have been numerous calls by healthcare professionals for a greater recognition and adoption of Planetary Health perspective. At the same time, current Western healthcare systems are facing their limits when it comes to providing affordable, equitable and sustainable healthcare services. Furthermore, while hospital-centrism remains the dominant model of Western health systems, primary care and public health continue to be largely undervalued by policy makers. While healthcare services will have to adapt to the sanitary impacts of environmental degradations, they should also ambition to accompany and accelerate the societal transformations required to re-inscribe the functioning of human societies within planetary boundaries. The entire health system requires profound transformations to achieve this, with obviously a key role for public health. But we argue that the first line of care represented by primary care might also have an important role to play, with its holistic, interdisciplinary, and longitudinal approach to patients, strongly grounded in their living environments and communities. This will require however to redefine the roles, activities and organization of primary care actors to better integrate socio-environmental determinants of health, strengthen interprofessional collaborations, including non-medical collaborations and more generally develop new, environmentally-centered models of care. Furthermore, a planetary health perspective translated in primary care will require the strengthening of synergies between institutions and actors in the field of health and sustainability.
Assuntos
Atenção à Saúde , Ecossistema , Humanos , Atenção Primária à SaúdeRESUMO
[This corrects the article DOI: 10.3389/fpubh.2022.931212.].
RESUMO
This study discusses the occurrence and environmental risk associated with a micropollutant plume originating from the direct discharge of treated wastewater into the Vidy Bay of Lake Geneva, Switzerland. The temporal variations and spatial extent of the plume and its effect on the presence of 39 pharmaceuticals and other micropollutants in the Vidy Bay were assessed over a 10 month period. A pronounced plume was observed from April to October, leading to locally elevated (up to 70-fold) pharmaceutical concentrations compared to the surrounding water column. For three of the measured substances, these plume-associated concentrations were sufficiently high to pose an ecotoxicological risk. The plume depth followed the thermal lake stratification, which moved to lower depths over the course of the warm seasons. Pharmaceutical hotspots associated with the plume were detected as far as 1.5 km downstream of the effluent wastewater outfall, but concentrations typically decreased with increasing distance from the wastewater outfall as a result of dilution and photodegradation. From November to January, when uniform temperature prevailed throughout the water column, no micropollutant plumes were detected. In contrast to pharmaceuticals, most pesticides showed homogeneous concentrations throughout the Vidy Bay during the whole study period, indicating that the effluent wastewater was not their dominant source. A strong linear correlation between electrical conductivity and concentrations of wastewater-derived micropollutants was identified. This relation will allow future estimates of wastewater-derived micropollutant concentrations via simple conductivity measurements.
Assuntos
Preparações Farmacêuticas/análise , Esgotos/análise , Poluentes da Água/análise , Condutividade Elétrica , Água Doce/análise , Estações do Ano , SuíçaRESUMO
As the smallest environmental microplastics (EMPs), even at nanoscale, are increasingly present in the environment, their availability and physical and chemical effects on marine organisms are poorly documented. In the present study, we primarily investigated the uptake and accumulation of a mixture of environmental microplastics (EMPs) obtained during an artificial degradation process in early-juvenile sea bass (Dicentrarchus labrax). Moreover, we evaluated their hazardous effects using biochemical markers of cytotoxicity. Polymer distribution and composition in gill, gut, and liver were analyzed using polarized light microscopy (PLM) and Raman microspectroscopy (RMS). Our findings revealed the size-dependent ingestion and accumulation of smaller MPs (0.45-3 µm) in fish tissues even after a short-term exposure (3 and 5 days). In addition to MPs, our results showed the presence of plastic additives including plasticizers, flame retardants, curing agents, heat stabilizers, and fiber-reinforced plastic materials in fish tissues, which contributed mostly to the larger-sized range (≥ 1.2 µm). Our data showed that significant oxidative alterations were highly correlated with MPs size range. Our results emphasized that the toxicity of smaller EMPs (≤ 3 µm) was closely related to different factors, including the target tissue, exposure duration, size range of MPs, and their chemical properties.
Assuntos
Bass , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Microplásticos , Plásticos/toxicidade , Distribuição Tecidual , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Biocides are widely used for domestic hygiene, agricultural and industrial applications. Their widespread use has resulted in their introduction into the environment and raised concerns about potential deleterious effects on aquatic ecosystems. In this study, the toxicity of the biocides triclosan, penconazole and metalaxyl were evaluated with the freshwater bacterium Caulobacter crescentus and with a freshwater microbial community using a combination of single- and double-stain flow cytometric assays. Growth of C. crescentus and the freshwater community were repressed by triclosan but not by penconazole or metalaxyl at concentrations up to 250 µM. The repressive effect of triclosan was dependent on culture conditions. Caulobacter crescentus was more sensitive to triclosan when grown with high glucose at high cell density than when grown directly in sterilized lake water at low cell density. This suggests that the use of conventional growth conditions may overestimate biocide toxicity. Additional experiments showed that the freshwater community was more sensitive to triclosan than C. crescentus, with 10 nM of triclosan being sufficient to repress growth and change the phylogenetic composition of the community. These results demonstrate that isolate-based assays may underestimate biocide toxicity and highlight the importance of assessing toxicity directly on natural microbial communities. Because 10 nM of triclosan is within the range of concentrations observed in freshwater systems, these results also raise concerns about the risk of introducing triclosan into the environment.
Assuntos
Alanina/análogos & derivados , Antibacterianos/toxicidade , Biodiversidade , Caulobacter crescentus/efeitos dos fármacos , Água Doce/microbiologia , Triazóis/toxicidade , Triclosan/toxicidade , Alanina/toxicidade , Análise por Conglomerados , Meios de Cultura/química , Citometria de Fluxo/métodos , Glucose/metabolismo , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Coloração e Rotulagem/métodosRESUMO
Aquatic organisms are typically exposed to fluctuating concentrations of herbicides in streams. To assess the effects on algae of repeated peak exposure to the herbicide isoproturon, we subjected the alga Scenedesmus vacuolatus to two sequential pulse exposure scenarios. Effects on growth and on the inhibition of the effective quantum yield of photosystem II (PSII) were measured. In the first scenario, algae were exposed to short, 5-h pulses at high isoproturon concentrations (400 and 1000 microg/l), each followed by a recovery period of 18 h, while the second scenario consisted of 22.5-h pulses at lower concentrations (60 and 120 microg/l), alternating with short recovery periods (1.5 h). In addition, any changes in the sensitivity of the algae to isoproturon following sequential pulses were examined by determining the growth rate-EC(50) prior to and following exposure. In both exposure scenarios, we found that algal growth and its effective quantum yield were systematically inhibited during the exposures and that these effects were reversible. Sequential pulses to isoproturon could be considered a sequence of independent events. Nevertheless, a consequence of inhibited growth during the repeated exposures is the cumulative decrease in biomass production. Furthermore, in the second scenario, when the sequence of long pulses began to approach a scenario of continuous exposure, a slight increase in the tolerance of the algae to isoproturon was observed. These findings indicated that sequential pulses do affect algae during each pulse exposure, even if algae recover between the exposures. These observations could support an improved risk assessment of fluctuating exposures to reversibly acting herbicides.
Assuntos
Herbicidas/toxicidade , Compostos de Fenilureia/toxicidade , Scenedesmus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Relação Dose-Resposta a Droga , Medição de Risco , Scenedesmus/crescimento & desenvolvimentoRESUMO
Modeling concentration-response function became extremely popular in ecotoxicology during the last decade. Indeed, modeling allows determining the total response pattern of a given substance. However, reliable modeling is consuming in term of data, which is in contradiction with the current trend in ecotoxicology, which aims to reduce, for cost and ethical reasons, the number of data produced during an experiment. It is therefore crucial to determine experimental design in a cost-effective manner. In this paper, we propose to use the theory of locally D-optimal designs to determine the set of concentrations to be tested so that the parameters of the concentration-response function can be estimated with high precision. We illustrated this approach by determining the locally D-optimal designs to estimate the toxicity of the herbicide dinoseb on daphnids and algae. The results show that the number of concentrations to be tested is often equal to the number of parameters and often related to the their meaning, i.e. they are located close to the parameters. Furthermore, the results show that the locally D-optimal design often has the minimal number of support points and is not much sensitive to small changes in nominal values of the parameters. In order to reduce the experimental cost and the use of test organisms, especially in case of long-term studies, reliable nominal values may therefore be fixed based on prior knowledge and literature research instead of on preliminary experiments.