Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 96(3): 899-918, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35089383

RESUMO

Tri-(2-ethylhexyl) trimellitate (TEHTM) is a plasticizer for polyvinyl chloride (PVC) material used in medical devices. It is an alternative to di-(2-ethylhexyl) phthalate (DEHP), a well-known reprotoxic and endocrine disruptor. As plasticizers are known to easily migrate when in contact with fatty biological fluids, patient exposure to TEHTM is highly probable. However, there is currently no data on the potential endocrine-disrupting effects of its human metabolites. To evaluate the effects of TEHTM metabolites on endocrine activity, they were first synthesized and their effects on estrogen, androgen and thyroid receptors, as well as steroid synthesis, were investigated by combining in vitro and in silico approaches. Among the primary metabolites, only 4-MEHTM (4-mono-(2-ethylhexyl) trimellitate) showed agonist activities on ERs and TRs, while three diesters were TR antagonists at non-cytotoxic concentrations. These results were completed by docking experiments which specified the ER and TR isoforms involved. A mixture of 2/1-MEHTM significantly increased the estradiol level and reduced the testosterone level in H295R cell culture supernatants. The oxidized secondary metabolites of TEHTM had no effect on ER, AR, TR receptors or on steroid hormone synthesis. Among the fourteen metabolites, these data showed that two of them (4-MEHTM and 2/1-MEHTM) induced effect on hormonal activities in vitro. However, by comparing the concentrations of the primary metabolites found in human urine with the active concentrations determined in bioassays, it can be suggested that the metabolites will not be active with regard to estrogen, androgen, thyroid receptors and steroidogenesis-mediated effects.


Assuntos
Benzoatos/toxicidade , Disruptores Endócrinos/toxicidade , Plastificantes/toxicidade , Benzoatos/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Disruptores Endócrinos/metabolismo , Estradiol/metabolismo , Humanos , Simulação de Acoplamento Molecular , Plastificantes/metabolismo , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores dos Hormônios Tireóideos/efeitos dos fármacos , Receptores dos Hormônios Tireóideos/metabolismo , Testosterona/metabolismo
2.
BMC Genomics ; 21(1): 881, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33297965

RESUMO

BACKGROUND: Bisphenol S (BPS) is a common bisphenol A (BPA) substitute, since BPA is virtually banned worldwide. However, BPS and BPA have both endocrine disrupting properties. Their effects appear mostly in adulthood following perinatal exposures. The objective of the present study was to investigate the impact of perinatal and chronic exposure to BPS at the low dose of 1.5 µg/kg body weight/day on the transcriptome and methylome of the liver in 23 weeks-old C57BL6/J male mice. RESULTS: This multi-omic study highlights a major impact of BPS on gene expression (374 significant deregulated genes) and Gene Set Enrichment Analysis show an enrichment focused on several biological pathways related to metabolic liver regulation. BPS exposure also induces a hypomethylation in 58.5% of the differentially methylated regions (DMR). Systematic connections were not found between gene expression and methylation profile excepted for 18 genes, including 4 genes involved in lipid metabolism pathways (Fasn, Hmgcr, Elovl6, Lpin1), which were downregulated and featured differentially methylated CpGs in their exons or introns. CONCLUSIONS: This descriptive study shows an impact of BPS on biological pathways mainly related to an integrative disruption of metabolism (energy metabolism, detoxification, protein and steroid metabolism) and, like most high-throughput studies, contributes to the identification of potential exposure biomarkers.


Assuntos
Metilação de DNA , Transcriptoma , Animais , Compostos Benzidrílicos , Feminino , Fígado/metabolismo , Masculino , Camundongos , Fenóis , Fosfatidato Fosfatase/metabolismo , Gravidez , Sulfonas
3.
J Appl Toxicol ; 39(7): 1043-1056, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30847963

RESUMO

Plasticizers added to polyvinylchloride used in medical devices can be released into patients' biological fluids. The substitution of di-(2-ethylhexyl)phthalate (DEHP) by alternative plasticizers is essential but their safety must be demonstrated. DEHP, di-(2-ethylhexyl)terephthalate (DEHT) and their metabolites were investigated using level 2 Organization for Economic Co-operation and Development bioassays to screen for in vitro hormonal changes. Differences between the DEHP and DEHT metabolites were observed. Albeit weak, the hormonal activities of DEHT-derived metabolites, e.g., 5-OH metabolite of mono-(ethylhexyl)terephthalate (5-OH-MEHT), were detected and the results of docking experiments performed on estrogen receptor alpha and androgen receptor agreed with the biological results. A co-stimulation of human estrogen receptor alpha and human androgen receptor was also observed. With regard to steroidogenesis, a 16-fold increase in estrogen synthesis was measured with 5-OH-MEHT. Therefore, even if DEHT remains an interesting alternative to DEHP because of its low migration from medical devices, it seems important to verify that multi-exposed patients in neonatal intensive care units do not have urinary levels of oxidized metabolites, in particular 5-OH-MEHT, suggesting a potential endocrine-disrupting effect.


Assuntos
Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Dietilexilftalato/metabolismo , Disruptores Endócrinos/metabolismo , Equipamentos e Provisões , Receptor alfa de Estrogênio/genética , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Ácidos Ftálicos/metabolismo , Plastificantes/metabolismo , Ligação Proteica , Receptores Androgênicos/genética , Transfecção
4.
Toxicol Appl Pharmacol ; 280(2): 224-35, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25111128

RESUMO

As bisphenol A (BPA) has been shown to induce adverse effects on human health, especially through the activation of endocrine pathways, it is about to be withdrawn from the European market and replaced by analogues such as bisphenol S (BPS). However, toxicological data on BPS is scarce, and so it is necessary to evaluate the possible effects of this compound on human health. We compared the effect of BPA and BPS on obesity and hepatic steatosis processes using low doses in the same range as those found in the environment. Two in vitro models were used, the adipose cell line 3T3-L1 and HepG2 cells, representative of hepatic functions. We analyzed different parameters such as lipid and glucose uptakes, lipolysis, leptin production and the modulation of genes involved in lipid metabolism and energy balance. BPA and BPS induced an increase in the lipid content in the 3T3-L1 cell line and more moderately in the hepatic cells. We also observed a decrease in lipolysis after bisphenol treatment of adipocytes, but only BPS was involved in the increase in glucose uptake and leptin production. These latter effects could be linked to the modulation of SREBP-1c, PPARγ, aP2 and ERRα and γ genes after exposure to BPA, whereas BPS seems to target the PGC1α and the ERRγ genes. The findings suggest that both BPA and BPS could be involved in obesity and steatosis processes, but through two different metabolic pathways.


Assuntos
Compostos Benzidrílicos/toxicidade , Fígado/efeitos dos fármacos , Fenóis/toxicidade , Sulfonas/toxicidade , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Glucose/metabolismo , Células Hep G2 , Humanos , Leptina/biossíntese , Lipólise/efeitos dos fármacos , Fígado/metabolismo , Camundongos , PPAR gama/análise , Receptores de Estrogênio/fisiologia , Triglicerídeos/metabolismo
5.
Food Chem Toxicol ; 185: 114484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280474

RESUMO

Can's polyester coatings are intended to replace epoxy-phenolic ones due to rising safety concern regarding the potential release of bisphenol A under increased regulations and consumer pressure. In this study, hazard linked to the migration of non-intentionally added substances from a single polyester-coated tin plate (5 batches) to canned food has been studied. Migration tests were performed using acetonitrile (ACN) and ethanol (EtOH) 95 %. Non-targeted analyses by liquid chromatography-high-resolution mass spectrometry revealed the presence of four cyclic oligoesters classified as Cramer class III substances with an estimated exposure (calculated for French population only) below the threshold of toxicological concern value of 1.5 µg/kg b.w./day, suggesting a no safety concern. Moreover, migrates were tested using in vitro genotoxicity DNA damage response (DDR) test and mini mutagenicity test (MMT) with different strains of S. Typhimurium using direct incorporation (TA100, TA98, TA102, TA1537) and pre-incubation (TA100, TA98) methods. Samples were negative in both bioassays suggesting the absence of genotoxicity/mutagenicity of the mixtures. To verify any false negative response due to matrix effect, migrates were spiked with corresponding positive controls in parallel with the MMT and the DDR test. No matrix effect was observed in these experimental conditions.


Assuntos
Contaminação de Alimentos , Poliésteres , Poliésteres/toxicidade , Poliésteres/química , Contaminação de Alimentos/análise , Embalagem de Alimentos , Alimentos , Mutagênicos/toxicidade , Mutagênicos/análise , Testes de Mutagenicidade
6.
Polymers (Basel) ; 15(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836058

RESUMO

The endocrine activity and endocrine disruptor (ED) chemical profiles of eleven plastic packaging materials covering five major polymer types (3PET, 1HDPE, 4LDPE, 2 PP, and 1SAN) were investigated using in vitro cell-based reporter-gene assays and a non-targeted chemical analysis using gas chromatography coupled to mass spectrometry (GC-MS). To mimic cosmetic contact, six simulants (acidic, alkaline, neutral water, ethanol 30%, glycerin, and paraffin) were used in migration assays performed by filling the packaging with simulant. After 1 month at 50 °C, simulants were concentrated by Solid Phase Extraction (SPE) or Liquid-Liquid Extraction (LLE). The migration profiles of seven major endocrine disrupting chemicals detected from GC-MS in the different materials and simulants were compared with Estrogen Receptor (ER) and Androgen Receptor (AR) activities. With low extraction of ED chemicals in aqueous simulants, no endocrine activities were recorded in the leachates. Paraffin was shown to be the most extracting simulant of antiandrogenic chemicals, while glycerin has estrogenic activities. Overall, ED chemical migration in paraffin was correlated with hormonal activity. The NIAS 2,4-di-tert-butyl phenol and 7,9-di-tert-butyl1-oxaspiro (4,5) deca-6,9-diene-2,8-dione were two major ED chemicals present in all polymers (principally in PP and PE) and in the highest quantity in paraffin simulant. The use of glycerin and liquid paraffin as cosmetic product simulants was demonstrated to be relevant and complementary for the safety assessment of released compounds with endocrine activities in this integrated strategy combining bioassays and analytical chemistry approaches.

7.
Mutat Res Rev Mutat Res ; 791: 108455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36933785

RESUMO

Nanoparticles (NPs) are present in many daily life products with particular physical-chemical properties (size, density, porosity, geometry …) giving very interesting technological properties. Their use is continuously growing and NPs represent a new challenge in terms of risk assessment, consumers being multi-exposed. Toxic effects have already been identified such as oxidative stress, genotoxicity, inflammatory effects, and immune reactions, some of which are leading to carcinogenesis. Cancer is a complex phenomenon implying multiple modes of action and key events, and prevention strategies in cancer include a proper assessment of the properties of NPs. Therefore, introduction of new agents like NPs into the market creates fresh regulatory challenges for an adequate safety evaluation and requires new tools. The Cell Transformation Assay (CTA) is an in vitro test able of highlighting key events of characteristic phases in the cancer process, initiation and promotion. This review presents the development of this test and its use with NPs. The article underlines also the critical issues to address for assessing NPs carcinogenic properties and approaches for improving its relevance.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Humanos , Carcinógenos/toxicidade , Células 3T3 BALB , Carcinogênese , Transformação Celular Neoplásica , Nanopartículas/toxicidade
8.
Chem Senses ; 37(1): 87-95, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21873273

RESUMO

The interindividual variation in the sensitivity to bitterness is attributed in part to genetic polymorphism at the taste receptor level, but other factors, such as saliva composition, might be involved. In order to investigate this, 2 groups of subjects (hyposensitive, hypersensitive) were selected from 29 healthy male volunteers based on their detection thresholds for caffeine, and their salivary proteome composition was compared. Abundance of 26 of the 255 spots detected on saliva electrophoretic patterns was significantly different between hypo- and hypersensitive subjects. Saliva of hypersensitive subjects contained higher levels of amylase fragments, immunoglobulins, and serum albumin and/or serum albumin fragments. It also contained lower levels of cystatin SN, an inhibitor of protease. The results suggest that proteolysis occurring within the oral cavity is an important perireceptor factor associated to the sensitivity to the bitter taste of caffeine.


Assuntos
Cafeína/farmacologia , Saliva/química , Proteínas e Peptídeos Salivares/análise , Proteínas e Peptídeos Salivares/metabolismo , Paladar/efeitos dos fármacos , Paladar/fisiologia , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Limiar Gustativo/efeitos dos fármacos , Limiar Gustativo/fisiologia
9.
Chem Biol Interact ; 360: 109952, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35436446

RESUMO

BACKGROUND: The use of phytosanitary products is always associated with their safety concern on the environment and on health. The associated adverse effects are very broad and substance-dependent. Among these substances, epoxiconazole (EPOX) is one of the most widely used fungicides, especially in beet crops. Although its use is questionable or even prohibited in the European Union, it is still widely used and its consequences (transgenerational effects) on future generations is unknown. OBJECTIVES: We aimed to investigate the hepatic effects of epoxiconazole in the descendants of perinatally exposed low-dose C57Bl/6J mice, focusing on liver histological and transcriptomic analyses. METHODS: From day 0 of gestation up to day 21 postnatal, only pregnant F0 C57BL6/J mice were exposed to EPOX (1.75 µg/kg bw/day). F1 males and females were mated to obtain the F2 generation and similarly, F2 mice were crossed to obtain F3. Histological and transcriptomic analyses of the liver were performed. Gene set enrichment analysis was realized to determine an a priori defined set of genes with significantly altered mRNA expression. Plasma parameters were also measured. RESULTS AND CONCLUSION: s: Perinatal exposure to EPOX induces transgenerational effects with phenotypic, histological and transcriptomic changes in the liver. These changes are highly dependent on the sex and generation of the animal. All these modifications lead to an alteration of the hepatic metabolism resulting in a difference in the size of the hepatocytes. Beyond these specific mechanisms, EPOX also seems to have a more general impact on hepatic metabolism via the circadian rhythm.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Animais , Compostos de Epóxi , Feminino , Humanos , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Transcriptoma , Triazóis
10.
Crit Rev Food Sci Nutr ; 51(1): 67-90, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21229419

RESUMO

During eating, foods are submitted to two main oral processes-chewing, including biting and crushing with teeth, and progressive impregnation by saliva resulting in the formation of a cohesive bolus and swallowing of the bolus. Texture influences the chewing behavior, including mastication and salivation, and in turn, these parameters influence texture perception and bolus formation. During this complex mouth process, flavor compounds are progressively released from the food matrix. This phenomenon is mainly dependent on the food texture, the composition and in-mouth breakdown, and on saliva impregnation and activity, but an individual's anatomical and physiological aspects characteristics should also be taken into account. This article reviews the knowledge and progresses on in-mouth processes leading to food breakdown and flavor release and affecting perception. Relationships between food texture and composition, food breakdown, oral physiology, and flavor release are developed and discussed. This review includes not only the mechanical aspects of oral physiology but also the biological aspects such as the influence of saliva composition, activity, and regulation on flavor perception. In vitro and in silico approaches are also described.


Assuntos
Aromatizantes/metabolismo , Mastigação/fisiologia , Boca/fisiologia , Saliva/fisiologia , Percepção Gustatória/fisiologia , Paladar , Deglutição , Ingestão de Alimentos/fisiologia , Alimentos , Modelos Teóricos , Salivação
11.
J Appl Toxicol ; 31(1): 36-44, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20652869

RESUMO

The objective of this study was to evaluate the developmental toxic potential of di-n-propyl phthalate (DnPP) in rats. Pregnant Sprague-Dawley rats were given DnPP at doses of 0 (olive oil), 0.5, 1 and 1.5 g kg⁻¹ per day, by gavage, on gestation days 6-20. Benchmark doses were calculated for the effects of DnPP on fetal weight and anogenital distance of the male fetuses. Maternal body weight gain was significantly reduced at 1.5 g kg⁻¹ per day, over gestation days 6-9. DnPP-treated dams also showed a statistically significant increase in liver weight and a mild but statistically significant peroxisomal enzyme induction at 1 or 1.5 g kg⁻¹ per day. Male and female fetal body weights were significantly reduced at 1.5 g kg⁻¹ per day. There was a statistically significant decrease in the anogenital distance of the male fetuses at 1 and 1.5 g kg⁻¹ per day, and three males (of 75) showed malpositioned testis at the high dose. The mean percentage of fetuses per litter with cervical and thoracic rudimentary ribs was significantly increased at 1 and 1.5 g kg⁻¹ per day. Delayed ossification was seen at 1 g kg⁻¹ per day (phalanges) and 1.5 g kg⁻¹ per day (hyoid, sternebrae, and phalanges). No treatment-related effects on prenatal viability or on fetal external or visceral malformations or variations were observed at any dose. Thus, there was no evidence of teratogenicity up to the high dose of 1.5 g kg⁻¹ per day. The no-observed-adverse-effect level (NOAEL) for developmental toxicity was 0.5 g kg⁻¹ per day.


Assuntos
Anormalidades Induzidas por Medicamentos/embriologia , Feto/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Teratogênicos/toxicidade , Anormalidades Induzidas por Medicamentos/patologia , Administração Oral , Animais , Peso Corporal , Feminino , Desenvolvimento Fetal , Reabsorção do Feto/induzido quimicamente , Peso Fetal , Feto/anormalidades , Feto/embriologia , Masculino , Nível de Efeito Adverso não Observado , Ácidos Ftálicos/administração & dosagem , Gravidez , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
12.
Drug Chem Toxicol ; 34(4): 445-53, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21770713

RESUMO

Bisphenol F (BPF) is present in the environment and as a contaminant of food. Humans may, therefore, be exposed to BPF, and an assessment of this risk is required. BPF has been shown to have genotoxic and endocrine-disruptor properties in a human hepatoma cell line (HepG2), which is a model system for studies of xenobiotic toxicity. In this study, we investigated the ability of HepG2 cells to biotransform BPF, because metabolism may affect the observed effects of BPF, and we compared this metabolic capacity with that of human hepatocytes. Cells were incubated for 24 hours with [(3)H]-BPF. The culture medium was then concentrated and its metabolites were isolated by high-performance liquid chromatography and identified by mass spectrometry. BPF was largely metabolized into the corresponding sulfate by the HepG2 cell line. BPF was metabolized into both sulfate and glucuronide by human hepatocytes, but with differences between individuals. The metabolism of BPF in both HepG2 cells and human hepatocytes suggests the existence of a detoxification pathway. Thus, these two cell models differ in metabolic capacity. It is, therefore, very important, when assessing the toxic effects of substances in vitro, to determine, in parallel, the biotransformation capacities of the model used to extrapolate in vivo.


Assuntos
Compostos Benzidrílicos/metabolismo , Poluentes Ambientais/metabolismo , Hepatócitos/efeitos dos fármacos , Biotransformação , Técnicas de Cultura de Células , Cromatografia Líquida de Alta Pressão , Criopreservação , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Células Hep G2 , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Luciferases/genética , Espectrometria de Massas , Estrutura Molecular , Plasmídeos , Transfecção , beta-Galactosidase/genética
13.
Chemosphere ; 262: 128009, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182144

RESUMO

Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of individuals in subsequent generations. Bisphenol S (BPS) has been widely used as a substitute for various plastic materials due to the limited application of Bisphenol A (BPA) which is an endocrine disruptor. However, the lack of efficient evaluation of BPS leaves doubts about the relevant substitute of BPA. Few studies of transgenerational inheritance have examined the effects of environmental exposures to endocrine disruptors on the immune system. In this study, we analyzed the transgenerational effects of BPS on intestinal inflammation and its consequence in metabolism. In this study, only F0 pregnant mice were exposed to BPS (1.5 µg/kg bw/day) from gestational day 0 until weaning of offspring. In this work, both F1 and F2 male offspring developed an inflammatory response in the ileum and colon at adulthood after F0 mothers were exposed to BPS; this phenomenon disappeared in F3. This inflammatory response in F1 male offspring is associated with a significant decrease of blood cholesterol without modification of metabolic status. Further, in F3 offspring male, the decrease of gut inflammatory response is associated with a decrease of fat weight and with an increase of blood glucose and cholesterol level. A sex-specific profile is observed in female offspring. We also observed that early life exposure to BPS was associated with strong abnormal intestinal immune status. The study presented here demonstrates that the immune system, like other organ systems, is vulnerable to transgenerational effects caused by environmental exposures.


Assuntos
Citocinas/análise , Disruptores Endócrinos/toxicidade , Intestinos/imunologia , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Sulfonas/toxicidade , Animais , Glicemia/análise , Peso Corporal/efeitos dos fármacos , Fezes/química , Feminino , Inflamação , Intestinos/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia
14.
Environ Pollut ; 270: 116243, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326921

RESUMO

BACKGROUND: Bisphenol S is an endocrine disruptor exhibiting metabolic disturbances, especially following perinatal exposures. To date, no data are available on the obesogen effects of BPS in a mutligenerational issue. OBJECTIVES: We investigated obesogen effects of BPS in a multigenerational study by focusing on body weight, adipose tissue and plasma parameters in male and female mice. METHODS: Pregnant C57BL6/J mice were exposed to BPS (1.5 µg/kg bw/day ie a human equivalent dose of 0.12 µg/kg bw/day) by drinking water from gestational day 0 to post natal day 21. All offsprings were fed with a high fat diet during 15 weeks. Body weight was monitored weekly and fat mass was measured before euthanasia. At euthanasia, blood glucose, insuline, triglyceride, cholesterol and no esterified fatty acid plasma levels were determined and gene expressions in visceral adipose tissue were assessed. F1 males and females were mated to obtain the F2 generation. Likewise, the F2 mice were cross-bred to obtain F3. The same analyses were performed. RESULTS: In F1 BPS induced an overweight in male mice associated to lipolysis gene expressions upregulation. In F1 females, dyslipidemia was observed. In F2, BPS exposure was associated to an increase in body weight, fat and VAT masses in males and females. Several plasma parameters were increased but with a sex related pattern (blood glucose, triglycerides and cholesterol in males and NEFA in females). We observed a down-regulation in mRNA expression of gene involved in lipogenesis and in lipolysis for females but only in the lipogenesis for males. In F3, a decrease in VAT mass and an upregulation of lipogenesis gene expression occurred only in females. CONCLUSIONS: BPS perinatal exposure induced sex-dependent obesogen multigenerational effects, the F2 generation being the most impacted. Transgenerational disturbances persisted only in females.


Assuntos
Dieta Hiperlipídica , Efeitos Tardios da Exposição Pré-Natal , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Camundongos , Fenóis/toxicidade , Gravidez , Sulfonas
15.
Metabolites ; 11(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578748

RESUMO

Plasticizers added to polyvinylchloride (PVC) used in medical devices can be released into patients' biological fluids. Di-(2-ethylhexyl)phthalate (DEHP), a well-known reprotoxic and endocrine disruptor, must be replaced by alternative compounds. Di-(2-ethylhexyl) terephthalate (DEHT) is an interesting candidate due to its lower migration from PVC and its lack of reprotoxicity. However, there is still a lack of data to support the safety of its human metabolites with regard to their hormonal properties in the thyroid system. The effects of DEHT metabolites on thyroid/hormone receptors (TRs) were compared in vitro and in silico to those of DEHP. The oxidized metabolites of DEHT had no effect on T3 receptors whereas 5-hydroxy-mono-(ethylhexyl)phthalate (5-OH-MEHP) appeared to be primarily an agonist for TRs above 0.2 µg/mL with a synergistic effect on T3. Monoesters (MEHP and mono-(2-ethylhexyl)terephthalate, MEHT) were also active on T3 receptors. In vitro, MEHP was a partial agonist between 10 and 20 µg/mL. MEHT was an antagonist at non-cytotoxic concentrations (2-5 µg/mL) in a concentration-dependent manner. The results obtained with docking were consistent with those of the T-screen and provide additional information on the preferential affinity of monoesters and 5-OH-MEHP for TRs. This study highlights a lack of interactions between oxidized metabolites and TRs, confirming the interest of DEHT.

16.
Chemosphere ; 241: 125092, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31683443

RESUMO

Environmental pollution is increasingly considered an important factor involved in the obesity incidence. Endocrine disruptors (EDs) are important actors in the concept of DOHaD (Developmental Origins of Health and Disease), where epigenetic mechanisms play crucial roles. Bisphenol A (BPA), a monomer used in the manufacture of plastics and resins is one of the most studied obesogenic endocrine disruptor. Bisphenol S (BPS), a BPA substitute, has the same obesogenic properties, acting at low doses with a sex-specific effect following perinatal exposure. Since the liver is a major organ in regulating body lipid homeostasis, we investigated gene expression and DNA methylation under low-dose BPS exposure. The BPS obesogenic effect was associated with an increase of hepatic triglyceride content. These physiological disturbances were accompanied by genome-wide changes in gene expression (1366 genes significantly modified more than 1.5-fold). Gene ontology analysis revealed alteration of gene cascades involved in protein translation and complement regulation. It was associated with hepatic DNA hypomethylation in autosomes and hypermethylation in sex chromosomes. Although no systematic correlation has been found between gene repression and hypermethylation, several genes related to liver metabolism were either hypermethylated (Acsl4, Gpr40, Cel, Pparδ, Abca6, Ces3a, Sgms2) or hypomethylated (Soga1, Gpihbp1, Nr1d2, Mlxipl, Rps6kb2, Esrrb, Thra, Cidec). In specific cases (Hapln4, ApoA4, Cidec, genes involved in lipid metabolism and liver fibrosis) mRNA upregulation was associated with hypomethylation. In conclusion, we show for the first time wide disruptive physiological effects of low-dose of BPS, which raises the question of its harmlessness as an industrial substitute for BPA.


Assuntos
Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Obesidade/induzido quimicamente , Fenóis/toxicidade , Sulfonas/toxicidade , Animais , Relação Dose-Resposta a Droga , Disruptores Endócrinos/administração & dosagem , Disruptores Endócrinos/toxicidade , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/genética , Fenóis/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/genética , Sulfonas/administração & dosagem , Testes de Toxicidade
17.
Foods ; 9(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290180

RESUMO

Hummus, an iron-containing plant-based dish mainly made from chickpea purée, tahini, lemon juice and garlic, could be a valuable source of iron when bioavailable. Since the processing and formulation of food influence iron bioavailability, the present study investigated for the first time, their effects on hummus. Firstly, iron bioaccessibility was assessed on eight samples (prepared according to the screening Hadamard matrix) by in vitro digestion preceding iron dialysis. Then, iron bioavailability of four selected samples was estimated by the in vitro digestion/Caco-2 cell model. Total and dialyzable iron were determined by the atomic absorption spectrometry and ferritin formation was determined using an ELISA kit. Only autoclaving, among other processes, had a significant effect on iron bioaccessibility (+9.5, p < 0.05). Lemon juice had the highest positive effect (+15.9, p < 0.05). Consequently, the effect of its acidic components were investigated based on a full factorial 23 experimental design; no significant difference was detected. Garlic's effect was not significant, but tahini's effect was negative (-8.9, p < 0.05). Despite the latter, hummus had a higher iron bioavailability than only cooked chickpeas (30.4 and 7.23 ng ferritin/mg protein, respectively). In conclusion, hummus may be a promising source of iron; further in vivo studies are needed for confirmation.

18.
Toxicology ; 255(1-2): 15-24, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18973785

RESUMO

Human can be exposed to bis(hydroxyphenyl)methane (bisphenol F or BPF) and its derivatives as environment and food's contaminants. This study was investigated to identify and to compare toxic potency of BPF, BFDGE, and two of BPF metabolites using in vitro methods. BPF did not induce any genic mutation in bacteria when the Ames test was performed according to the OECD guideline. In contrast, using Human cell lines and Comet assay, we demonstrated that BPF and Bisphenol F Diglycidyl Ether (BFDGE) were effective on HepG2 cell DNA fragmentation at non-cytotoxic concentrations. DHB was also positive but at higher concentrations, near its limit of solubility. Neither BPF, nor DHB induced a positive response in the micronucleus assay. The increase of micronuclei observed when cells were exposed to BFDGE was mostly due to a cytotoxic effect. Concerning endocrine activities, BPF increased the luciferase activity in HepG2 cells transiently transfected with a concentration dependant pattern, DHB also induced a positive response but at highest concentrations. Estrogenic responses in the HepG2 cells differed with the estrogen receptor (ER) involved. Using MDA-kb2 cell line stably transfected with pMMTV-neo-Luc, only BPF was anti-androgenic at the highest concentration (10(-5)M). Then, we demonstrated using human cell lines, especially HepG2, BPF was the most toxic compound in term of genotoxicity and endocrine activities compared to DHB and BPF-OH, the free metabolites identified in rat urine when BPF was administrated to rats.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos , Mutagênicos , Antagonistas de Androgênios/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Estrogênios não Esteroides/farmacologia , Humanos , Testes para Micronúcleos , Testes de Mutagenicidade , Transfecção
19.
Foods ; 8(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739565

RESUMO

The objective of this study was to assess Lebanese population exposure to trace elements (TEs) via white pita consumption. A survey of white pita consumption was achieved among one thousand Lebanese individuals, grouped into adults (above 15 years old, men, and women) and young people (6-9 and 10-14 years old). The most consumed pita brands, labeled B1, B2, and B3, were selected. Levels of TEs (i.e., As, Cd, Co, Cr, Hg, Ni, and Pb) in B1, B2, B3 pitas were measured. The highest contents of TEs in pitas were: Ni (1292 µg/kg) and Co (91 µg/kg) in B1; As (400 µg/kg) and Cd (< 15 µg/kg) in B2; Cr (363 µg/kg), Pb (260 µg/kg), and Hg (0.89 µg/kg) in B3. The pita brand B3 was the source of the highest TEs exposure, except for Ni for which it was B1. Daily exposures to TEs due to the fact of pita consumption were compared to safety levels. There were no safety concerns for Hg, Cd, Cr or Co (except the 95th percentile of 6-9 years old). An excess of the Ni tolerable daily intake was observed for the most exposed populations. The very low margins of exposure for As and Pb suggest a worrying risk for the Lebanese population.

20.
Steroids ; 73(12): 1242-51, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18634814

RESUMO

In order to provide a global analysis of the effects of endocrine disruptors on the hormone cellular bioavailability, we combined 17beta-estradiol (E2) cellular flow studies with real-time PCR and Western blot expression measurements of genes involved in the hormone metabolism and excretion. Three endocrine disruptors commonly found in food were chosen for this study, which was conducted in the estrogen receptor (ER) negative hepatoblastoma HepG2 cell line: bisphenol A (BPA), genistein (GEN) and resveratrol (RES). We showed that 24 h after a single dose treatment with genistein, resveratrol or bisphenol A, the expression of ATP-binding cassette transporters (the multidrug resistance or MDR, and the multidrug resistance associated proteins or MRP) uridine diphosphate-glucuronosyltransferases (UGT) and/or sulfotransferases (ST) involved in 17beta-estradiol elimination process were significantly modulated and that 17beta-estradiol cellular flow was modified. Resveratrol induced MDR1 and MRP3 expressions, bisphenol A induced MRP2 and MRP3 expressions, and both enhanced 17beta-estradiol efflux. Genistein, on the other hand, inhibited ST1E1 and UGT1A1 expressions, and led to 17beta-estradiol cellular retention. Thus, we demonstrate that bisphenol A, genistein and resveratrol modulate 17beta-estradiol cellular bioavailability in HepG2 and that these modulations most probably involve regulations of 17beta-estradiol phase II and III metabolism proteins. Up to now, the estrogenicity of environmental estrogenic pollutants has been based on the property of these compounds to bind to ERs. Our results obtained with ER negative cells provide strong evidence for the existence of ER-independent pathways leading to endocrine disruption.


Assuntos
Disruptores Endócrinos/farmacologia , Estradiol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sequência de Bases , Western Blotting , Linhagem Celular , Primers do DNA , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA