Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(4): 864-879.e19, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675497

RESUMO

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Encefalopatias Metabólicas/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Ansiedade/genética , Ansiedade/imunologia , Ansiedade/fisiopatologia , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/fisiopatologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Dinâmica Mitocondrial/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise de Célula Única , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Transcriptoma/genética , Xantina/metabolismo
2.
Immunity ; 54(8): 1728-1744.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343498

RESUMO

Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.


Assuntos
Antioxidantes/farmacologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Selênio/farmacologia , Selenoproteína W/metabolismo , Células Th1/citologia , Diferenciação Celular/imunologia , Polaridade Celular , Colo/imunologia , Colo/patologia , Glicina Hidroximetiltransferase/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas/metabolismo , Células Th1/imunologia , Ubiquitina-Proteína Ligases/metabolismo
3.
Hum Mol Genet ; 32(7): 1137-1151, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36331344

RESUMO

Mitochondrial dynamics is essential for maintaining the physiological function of the mitochondrial network, and its disorders lead to a variety of diseases. Our previous study identified mitochondrial dynamics controlled anti-tumor immune responses and anxiety symptoms. However, how mitochondrial dynamics affects auditory function in the inner ear remains unclear. Here, we show that the deficiency of FAM73a or FAM73b, two mitochondrial outer membrane proteins that mediate mitochondrial fusion, leads to outer hair cells (HCs) damage and progressive hearing loss in FVB/N mice. Abnormal mitochondrial fusion causes elevated oxidative stress and apoptosis of HCs in the early stage. Thereafter, the activation of macrophages and CD4+ T cell is found in the mutant mice with the increased expression of the inflammatory cytokines IL-12 and IFN-γ compared with control mice. Strikingly, a dramatically decreased number of macrophages by Clophosome®-A-Clodronate Liposomes treatment alleviates the hearing loss of mutant mice. Collectively, our finding highlights that FAM73a or FAM73b deficiency affects HCs survival by disturbing the mitochondrial function, and the subsequent immune response in the cochleae worsens the damage of HCs.


Assuntos
Perda Auditiva , Dinâmica Mitocondrial , Animais , Camundongos , Dinâmica Mitocondrial/genética , Audição , Perda Auditiva/genética , Perda Auditiva/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Imunidade
4.
Lancet ; 403(10441): 2317-2325, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280389

RESUMO

BACKGROUND: Autosomal recessive deafness 9, caused by mutations of the OTOF gene, is characterised by congenital or prelingual, severe-to-complete, bilateral hearing loss. However, no pharmacological treatment is currently available for congenital deafness. In this Article, we report the safety and efficacy of gene therapy with an adeno-associated virus (AAV) serotype 1 carrying a human OTOF transgene (AAV1-hOTOF) as a treatment for children with autosomal recessive deafness 9. METHODS: This single-arm, single-centre trial enrolled children (aged 1-18 years) with severe-to-complete hearing loss and confirmed mutations in both alleles of OTOF, and without bilateral cochlear implants. A single injection of AAV1-hOTOF was administered into the cochlea through the round window. The primary endpoint was dose-limiting toxicity at 6 weeks after injection. Auditory function and speech were assessed by appropriate auditory perception evaluation tools. All analyses were done according to the intention-to-treat principle. This trial is registered with Chinese Clinical Trial Registry, ChiCTR2200063181, and is ongoing. FINDINGS: Between Oct 19, 2022, and June 9, 2023, we screened 425 participants for eligibility and enrolled six children for AAV1-hOTOF gene therapy (one received a dose of 9 × 1011 vector genomes [vg] and five received 1·5 × 1012 vg). All participants completed follow-up visits up to week 26. No dose-limiting toxicity or serious adverse events occurred. In total, 48 adverse events were observed; 46 (96%) were grade 1-2 and two (4%) were grade 3 (decreased neutrophil count in one participant). Five children had hearing recovery, shown by a 40-57 dB reduction in the average auditory brainstem response (ABR) thresholds at 0·5-4·0 kHz. In the participant who received the 9 × 1011 vg dose, the average ABR threshold was improved from greater than 95 dB at baseline to 68 dB at 4 weeks, 53 dB at 13 weeks, and 45 dB at 26 weeks. In those who received 1·5 × 1012 AAV1-hOTOF, the average ABR thresholds changed from greater than 95 dB at baseline to 48 dB, 38 dB, 40 dB, and 55 dB in four children with hearing recovery at 26 weeks. Speech perception was improved in participants who had hearing recovery. INTERPRETATION: AAV1-hOTOF gene therapy is safe and efficacious as a novel treatment for children with autosomal recessive deafness 9. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, Science and Technology Commission of Shanghai Municipality, and Shanghai Refreshgene Therapeutics.


Assuntos
Dependovirus , Terapia Genética , Humanos , Terapia Genética/métodos , Dependovirus/genética , Criança , Masculino , Pré-Escolar , Feminino , Adolescente , Lactente , Vetores Genéticos , Resultado do Tratamento , Surdez/genética , Surdez/terapia , Mutação , Proteínas de Membrana
5.
PLoS Biol ; 20(11): e3001897, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36449487

RESUMO

Due to different nucleotide preferences at target sites, no single Cas9 is capable of editing all sequences. Thus, this highlights the need to establish a Cas9 repertoire covering all sequences for efficient genome editing. Cas9s with simple protospacer adjacent motif (PAM) requirements are particularly attractive to allow for a wide range of genome editing, but identification of such Cas9s from thousands of Cas9s in the public database is a challenge. We previously identified PAMs for 16 SaCas9 orthologs. Here, we compared the PAM-interacting (PI) domains in these orthologs and found that the serine residue corresponding to SaCas9 N986 was associated with the simple NNGG PAM requirement. Based on this discovery, we identified five additional SaCas9 orthologs that recognize the NNGG PAM. We further identified three amino acids that determined the NNGG PAM requirement of SaCas9. Finally, we engineered Sha2Cas9 and SpeCas9 to generate high-fidelity versions of Cas9s. Importantly, these natural and engineered Cas9s displayed high activities and distinct nucleotide preferences. Our study offers a new perspective to identify SaCas9 orthologs with NNGG PAM requirements, expanding the Cas9 repertoire.


Assuntos
Reconhecimento Psicológico , Serina , Serina/genética , Aminoácidos , Bases de Dados Factuais , Nucleotídeos
6.
EMBO Rep ; 24(1): e55387, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36394357

RESUMO

Interferon regulatory factor (IRF) 3 and IRF7 are master regulators of type I interferon (IFN-I)-dependent antiviral innate immunity. Upon viral infection, a positive feedback loop is formed, wherein IRF7 promotes further induction of IFN-I in the later stage. Thus, it is critical to maintain a suitably low level of IRF7 to avoid the hyperproduction of IFN-I. In this study, we find that early expression of IFN-I-dependent STAT1 promotes the expression of XAF1 and that XAF1 is associated specifically with IRF7 and inhibits the activity of XIAP. XAF1-knockout and XIAP-transgenic mice display resistance to viral infection, and this resistance is accompanied by increases in IFN-I production and IRF7 stability. Mechanistically, we find that the XAF1-XIAP axis controls the activity of KLHL22, an adaptor of the BTB-CUL3-RBX1 E3 ligase complex through a ubiquitin-dependent pathway. CUL3-KLHL22 directly targets IRF7 and catalyzes its K48-linked ubiquitination and proteasomal degradation. These findings reveal unexpected functions of the XAF1-XIAP axis and KLHL22 in the regulation of IRF7 stability and highlight an important target for antiviral innate immunity.


Assuntos
Interferon Tipo I , Viroses , Camundongos , Animais , Viroses/genética , Antivirais , Imunidade Inata , Ubiquitinação , Fator Regulador 7 de Interferon/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose
7.
Mol Ther ; 32(1): 204-217, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952086

RESUMO

Inner ear hair cells detect sound vibration through the deflection of mechanosensory stereocilia. Cytoplasmic protein TPRN has been shown to localize at the taper region of the stereocilia, and mutations in TPRN cause hereditary hearing loss through an unknown mechanism. Here, using biochemistry and dual stimulated emission depletion microscopy imaging, we show that the TPRN, together with its binding proteins CLIC5 and PTPRQ, forms concentric rings in the taper region of stereocilia. The disruption of TPRN rings, triggered by the competitive inhibition of the interaction of TPRN and CLIC5 or exogenous TPRN overexpression, leads to stereocilia degeneration and severe hearing loss. Most importantly, restoration of the TPRN rings can rescue the damaged auditory function of Tprn knockout mice by exogenously expressing TPRN at an appropriate level in HCs via promoter recombinant adeno-associated virus (AAV). In summary, our results reveal highly structured TPRN rings near the taper region of stereocilia that are crucial for stereocilia function and hearing. Also, TPRN ring restoration in stereocilia by AAV-Tprn effectively repairs damaged hearing, which lays the foundation for the clinical application of AAV-mediated gene therapy in patients with TPRN mutation.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Surdez/genética , Audição/genética , Perda Auditiva/genética , Perda Auditiva/terapia , Camundongos Knockout , Proteínas/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Estereocílios/metabolismo
8.
Mol Ther ; 32(5): 1387-1406, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414247

RESUMO

Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.


Assuntos
Cisplatino , Ferroptose , Perda Auditiva , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Cisplatino/efeitos adversos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Camundongos , Perda Auditiva/induzido quimicamente , Perda Auditiva/genética , Perda Auditiva/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Modelos Animais de Doenças , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/patologia , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos
9.
PLoS Genet ; 18(6): e1010232, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727824

RESUMO

Dync1li1, a subunit of cytoplasmic dynein 1, is reported to play important roles in intracellular retrograde transport in many tissues. However, the roles of Dync1li1 in the mammalian cochlea remain uninvestigated. Here we first studied the expression pattern of Dync1li1 in the mouse cochlea and found that Dync1li1 is highly expressed in hair cells (HCs) in both neonatal and adult mice cochlea. Next, we used Dync1li1 knockout (KO) mice to investigate its effects on hearing and found that deletion of Dync1li1 leads to early onset of progressive HC loss via apoptosis and to subsequent hearing loss. Further studies revealed that loss of Dync1li1 destabilizes dynein and alters the normal function of dynein. In addition, Dync1li1 KO results in a thinner Golgi apparatus and the accumulation of LC3+ autophagic vacuoles, which triggers HC apoptosis. We also knocked down Dync1li1 in the OC1 cells and found that the number of autophagosomes were significantly increased while the number of autolysosomes were decreased, which suggested that Dync1li1 knockdown leads to impaired transportation of autophagosomes to lysosomes and therefore the accumulation of autophagosomes results in HC apoptosis. Our findings demonstrate that Dync1li1 plays important roles in HC survival through the regulation of autophagosome transportation.


Assuntos
Autofagossomos , Dineínas do Citoplasma , Células Ciliadas Auditivas , Animais , Apoptose/fisiologia , Autofagossomos/metabolismo , Cóclea/citologia , Cóclea/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Camundongos
10.
Proc Natl Acad Sci U S A ; 119(10): e2107357119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238644

RESUMO

The Food and Drug Administration­approved drug sirolimus, which inhibits mechanistic target of rapamycin (mTOR), is the leading candidate for targeting aging in rodents and humans. We previously demonstrated that sirolimus could treat ARHL in mice. In this study, we further demonstrate that sirolimus protects mice against cocaine-induced hearing loss. However, using efficacy and safety tests, we discovered that mice developed substantial hearing loss when administered high doses of sirolimus. Using pharmacological and genetic interventions in murine models, we demonstrate that the inactivation of mTORC2 is the major driver underlying hearing loss. Mechanistically, mTORC2 exerts its effects primarily through phosphorylating in the AKT/PKB signaling pathway, and ablation of P53 activity greatly attenuated the severity of the hearing phenotype in mTORC2-deficient mice. We also found that the selective activation of mTORC2 could protect mice from acoustic trauma and cisplatin-induced ototoxicity. Thus, in this study, we discover a function of mTORC2 and suggest that its therapeutic activation could represent a potentially effective and promising strategy to prevent sensorineural hearing loss. More importantly, we elucidate the side effects of sirolimus and provide an evaluation criterion for the rational use of this drug in a clinical setting.


Assuntos
Perda Auditiva Neurossensorial/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/prevenção & controle , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Sirolimo/efeitos adversos , Sirolimo/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
J Nanobiotechnology ; 22(1): 458, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085923

RESUMO

Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.


Assuntos
Regeneração Nervosa , Gânglio Espiral da Cóclea , Engenharia Tecidual , Alicerces Teciduais , Gânglio Espiral da Cóclea/citologia , Humanos , Engenharia Tecidual/métodos , Animais , Alicerces Teciduais/química , Neurônios , Implantes Cocleares , Células-Tronco/citologia , Diferenciação Celular
12.
Cell Mol Life Sci ; 80(4): 86, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917323

RESUMO

Mechanosensitive hair cells (HCs) in the cochlear sensory epithelium are critical for sound detection and transduction. Mammalian HCs in the cochlea undergo cytogenesis during embryonic development, and irreversible damage to hair cells postnatally is a major cause of deafness. During the development of the organ of Corti, HCs and supporting cells (SCs) originate from the same precursors. In the neonatal cochlea, damage to HCs activates adjacent SCs to act as HC precursors and to differentiate into new HCs. However, the plasticity of SCs to produce new HCs is gradually lost with cochlear development. Here, we delineate an essential role for the guanine nucleotide exchange factor Net1 in SC trans-differentiation into HCs. Net1 overexpression mediated by AAV-ie in SCs promoted cochlear organoid formation and HC differentiation under two and three-dimensional culture conditions. Also, AAV-Net1 enhanced SC proliferation in Lgr5-EGFPCreERT2 mice and HC generation as indicated by lineage tracing of HCs in the cochleae of Lgr5-EGFPCreERT2/Rosa26-tdTomatoloxp/loxp mice. We further found that the up-regulation of Wnt/ß-catenin and Notch signaling in AAV-Net1-transduced cochleae might be responsible for the SC proliferation and HC differentiation. Also, Net1 overexpression in SCs enhanced SC proliferation and HC regeneration and survival after HC damage by neomycin. Taken together, our study suggests that Net1 might serve as a potential target for HC regeneration and that AAV-mediated gene regulation may be a promising approach in stem cell-based therapy in hearing restoration.


Assuntos
Transdiferenciação Celular , Células Ciliadas Auditivas , Animais , Camundongos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Cóclea , Camundongos Transgênicos
13.
Neurobiol Dis ; 183: 106176, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263384

RESUMO

Aminoglycoside antibiotics (AGAs) are widely used in life-threatening infections, but they accumulate in cochlear hair cells (HCs) and result in hearing loss. Increases in adenosine triphosphate (ATP) concentrations and P2X7 receptor expression were observed after neomycin treatment. Here, we demonstrated that P2X7 receptor, which is a non-selective cation channel that is activated by high ATP concentrations, may participate in the process through which AGAs enter hair cells. Using transgenic knockout mice, we found that P2X7 receptor deficiency protects HCs against neomycin-induced injury in vitro and in vivo. Subsequently, we used fluorescent gentamicin-Fluor 594 to study the uptake of AGAs and found fluorescence labeling in wild-type mice but not in P2rx7-/- mice in vitro. In addition, knocking-out P2rx7 did not significantly alter the HC count and auditory signal transduction, but it did inhibit mitochondria-dependent oxidative stress and apoptosis in the cochlea after neomycin exposure. We thus conclude that the P2X7 receptor may be linked to the entry of AGAs into HCs and is likely to be a therapeutic target for auditory HC protection.


Assuntos
Aminoglicosídeos , Ototoxicidade , Animais , Camundongos , Aminoglicosídeos/toxicidade , Aminoglicosídeos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Ototoxicidade/metabolismo , Antibacterianos/toxicidade , Neomicina/toxicidade , Neomicina/metabolismo , Células Ciliadas Auditivas/metabolismo , Cóclea , Trifosfato de Adenosina/metabolismo
14.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35021231

RESUMO

The family of trace amine-associated receptors (TAARs) is distantly related to G protein-coupled biogenic aminergic receptors. TAARs are found in the brain as well as in the olfactory epithelium where they detect biogenic amines. However, the functional relationship of receptors from distinct TAAR subfamilies and in different species is still uncertain. Here, we perform a thorough phylogenetic analysis of 702 TAAR-like (TARL) and TAAR sequences from 48 species. We show that a clade of Tarl genes has greatly expanded in lampreys, whereas the other Tarl clade consists of only one or two orthologs in jawed vertebrates and is lost in amniotes. We also identify two small clades of Taar genes in sharks related to the remaining Taar genes in bony vertebrates, which are divided into four major clades. We further identify ligands for 61 orphan TARLs and TAARs from sea lamprey, shark, ray-finned fishes, and mammals, as well as novel ligands for two 5-hydroxytryptamine receptor 4 orthologs, a serotonin receptor subtype closely related to TAARs. Our results reveal a pattern of functional convergence and segregation: TARLs from sea lamprey and bony vertebrate olfactory TAARs underwent independent expansions to function as chemosensory receptors, whereas TARLs from jawed vertebrates retain ancestral response profiles and may have similar functions to TAAR1 in the brain. Overall, our data provide a comprehensive understanding of the evolution and ligand recognition profiles of TAARs and TARLs.


Assuntos
Receptores de Amina Biogênica , Receptores Odorantes , Aminas , Animais , Encéfalo/metabolismo , Peixes/genética , Mamíferos/genética , Filogenia , Receptores de Amina Biogênica/genética , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética
15.
Mol Ther ; 30(1): 105-118, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34174443

RESUMO

Myosin VI(MYO6) is an unconventional myosin that is vital for auditory and vestibular function. Pathogenic variants in the human MYO6 gene cause autosomal-dominant or -recessive forms of hearing loss. Effective treatments for Myo6 mutation causing hearing loss are limited. We studied whether adeno-associated virus (AAV)-PHP.eB vector-mediated in vivo delivery of Staphylococcus aureus Cas9 (SaCas9-KKH)-single-guide RNA (sgRNA) complexes could ameliorate hearing loss in a Myo6WT/C442Y mouse model that recapitulated the phenotypes of human patients. The in vivo editing efficiency of the AAV-SaCas9-KKH-Myo6-g2 system on Myo6C442Y is 4.05% on average in Myo6WT/C442Y mice, which was ∼17-fold greater than editing efficiency of Myo6WT alleles. Rescue of auditory function was observed up to 5 months post AAV-SaCas9-KKH-Myo6-g2 injection in Myo6WT/C442Y mice. Meanwhile, shorter latencies of auditory brainstem response (ABR) wave I, lower distortion product otoacoustic emission (DPOAE) thresholds, increased cell survival rates, more regular hair bundle morphology, and recovery of inward calcium levels were also observed in the AAV-SaCas9-KKH-Myo6-g2-treated ears compared to untreated ears. These findings provide further reference for in vivo genome editing as a therapeutic treatment for various semi-dominant forms of hearing loss and other semi-dominant diseases.


Assuntos
Edição de Genes , Perda Auditiva , Animais , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Audição , Perda Auditiva/genética , Perda Auditiva/terapia , Humanos , Camundongos , RNA Guia de Cinetoplastídeos
16.
Cell Mol Life Sci ; 79(2): 79, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044530

RESUMO

The Hippo/Yes-associated protein (YAP) signaling pathway has been shown to be able to maintain organ size and homeostasis by regulating cell proliferation, differentiation, and apoptosis. The abuse of aminoglycosides is one of the main causes of sensorineural hearing loss (SSNHL). However, the role of the Hippo/YAP signaling pathway in cochlear hair cell (HC) damage protection in the auditory field is still unclear. In this study, we used the YAP agonist XMU-MP-1 (XMU) and the inhibitor Verteporfin (VP) to regulate the Hippo/YAP signaling pathway in vitro. We showed that YAP overexpression reduced neomycin-induced HC loss, while downregulated YAP expression increased HC vulnerability after neomycin exposure in vitro. We next found that activation of YAP expression inhibited C-Abl-mediated cell apoptosis, which led to reduced HC loss. Many previous studies have reported that the level of reactive oxygen species (ROS) is significantly increased in cochlear HCs after neomycin exposure. In our study, we also found that YAP overexpression significantly decreased ROS accumulation, while downregulation of YAP expression increased ROS accumulation. In summary, our results demonstrate that the Hippo/YAP signaling pathway plays an important role in reducing HC injury and maintaining auditory function after aminoglycoside exposure. YAP overexpression could protect against neomycin-induced HC loss by inhibiting C-Abl-mediated cell apoptosis and decreasing ROS accumulation, suggesting that YAP could be a novel therapeutic target for aminoglycosides-induced sensorineural hearing loss in the clinic.


Assuntos
Antibacterianos/efeitos adversos , Células Ciliadas Auditivas/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Neomicina/efeitos adversos , Proteínas de Sinalização YAP/metabolismo , Animais , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Camundongos , Fatores de Proteção , Inibidores da Síntese de Proteínas/efeitos adversos , Transdução de Sinais/efeitos dos fármacos
17.
Cell Mol Life Sci ; 79(3): 154, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218422

RESUMO

The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.


Assuntos
Cóclea/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Proteoma/análise , Transcriptoma , Animais , Cromatografia Líquida de Alta Pressão , Cóclea/citologia , Ontologia Genética , Camundongos , MicroRNAs/genética , Proteômica/métodos , Espectrometria de Massas em Tandem , Fatores de Tempo
18.
Cell Mol Life Sci ; 79(7): 385, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35753015

RESUMO

Hair cells play key roles in hearing and balance, and hair cell loss would result in hearing loss or vestibular dysfunction. Cellular and molecular research in hair cell biology provides us a better understanding of hearing and deafness. Zebrafish, owing to their hair cell-enriched organs, have been widely applied in hair cell-related research worldwide. Similar to mammals, zebrafish have inner ear hair cells. In addition, they also have lateral line neuromast hair cells. These different types of hair cells vary in morphology and function. However, systematic analysis of their molecular characteristics remains lacking. In this study, we analyzed the GFP+ cells isolated from Tg(Brn3c:mGFP) larvae with GFP expression in all hair cells using single-cell RNA-sequencing (scRNA-seq). Three subtypes of hair cells, namely macula hair cell (MHC), crista hair cell (CHC), and neuromast hair cell (NHC), were characterized and validated by whole-mount in situ hybridization analysis of marker genes. The hair cell scRNA-seq data revealed hair cell-specific genes, including hearing loss genes that have been identified in humans and novel genes potentially involved in hair cell formation and function. Two novel genes were discovered to specifically function in NHCs and MHCs, corresponding to their specific expression in NHCs and MHCs. This study allows us to understand the specific genes in hair cell subpopulations of zebrafish, which will shed light on the genetics of both human vestibular and cochlear hair cell function.


Assuntos
Perda Auditiva , Peixe-Zebra , Animais , Células Ciliadas Auditivas , Mamíferos/genética , RNA/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
PLoS Genet ; 16(8): e1008953, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776944

RESUMO

Apoptosis of cochlear hair cells is a key step towards age-related hearing loss. Although numerous genes have been implicated in the genetic causes of late-onset, progressive hearing loss, few show direct links to the proapoptotic process. By genome-wide linkage analysis and whole exome sequencing, we identified a heterozygous p.L183V variant in THOC1 as the probable cause of the late-onset, progressive, non-syndromic hearing loss in a large family with autosomal dominant inheritance. Thoc1, a member of the conserved multisubunit THO/TREX ribonucleoprotein complex, is highly expressed in mouse and zebrafish hair cells. The thoc1 knockout (thoc1 mutant) zebrafish generated by gRNA-Cas9 system lacks the C-startle response, indicative of the hearing dysfunction. Both Thoc1 mutant and knockdown zebrafish have greatly reduced hair cell numbers, while the latter can be rescued by embryonic microinjection of human wild-type THOC1 mRNA but to significantly lesser degree by the c.547C>G mutant mRNA. The Thoc1 deficiency resulted in marked apoptosis in zebrafish hair cells. Consistently, transcriptome sequencing of the mutants showed significantly increased gene expression in the p53-associated signaling pathway. Depletion of p53 or applying the p53 inhibitor Pifithrin-α significantly rescued the hair cell loss in the Thoc1 knockdown zebrafish. Our results suggested that THOC1 deficiency lead to late-onset, progressive hearing loss through p53-mediated hair cell apoptosis. This is to our knowledge the first human disease associated with THOC1 mutations and may shed light on the molecular mechanism underlying the age-related hearing loss.


Assuntos
Proteínas de Ligação a DNA/genética , Surdez/genética , Células Ciliadas Auditivas Internas/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Benzotiazóis/farmacologia , Proteína 9 Associada à CRISPR/genética , Proteínas de Ligação a DNA/deficiência , Surdez/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas Internas/patologia , Humanos , Camundongos , Mutação , RNA Guia de Cinetoplastídeos/genética , Transdução de Sinais/efeitos dos fármacos , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Sequenciamento do Exoma , Peixe-Zebra/genética
20.
Am J Physiol Cell Physiol ; 323(4): C1088-C1099, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938679

RESUMO

Sound is converted by hair cells in the cochlea into electrical signals, which are transmitted by spiral ganglion neurons (SGNs) and heard by the auditory cortex. G protein-coupled receptors (GPCRs) are crucial receptors that regulate a wide range of physiological functions in different organ and tissues. The research of GPCRs in the cochlea is essential for the understanding of the cochlea development, hearing disorders, and the treatment for hearing loss. Recently, several GPCRs have been found to play important roles in the cochlea. Frizzleds and Lgrs are dominant GPCRs that regulate stem cell self-renew abilities. Moreover, Frizzleds and Celsrs have been demonstrated to play core roles in the modulation of cochlear planar cell polarity (PCP). In addition, hearing loss can be caused by mutations of certain GPCRs, such as Vlgr1, Gpr156, S1P2, and Gpr126. And A1, A2A, and CB2 activation by agonists has protective functions on noise- or drug-induced hearing loss. Here, we review the key findings of GPCR in the cochlea and discuss the role of GPCR in the cochlea, such as stem cell fate, PCP, hearing loss, and hearing protection.


Assuntos
Cóclea , Audição , Polaridade Celular , Audição/fisiologia , Receptores Acoplados a Proteínas G , Gânglio Espiral da Cóclea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA