RESUMO
Ethyl2-acetylamino-7-hydroxy-4-pyridin-3-yl-4H-chromene-3-carboxylate (HFI-419), the benzopyran-based inhibitor of insulin-regulated aminopeptidase (IRAP), has previously been shown to improve spatial working and recognition memory in rodents. However, the mechanism of its cognitive-enhancing effect remains unknown. There is a close correlation between dendritic spine density and learning in vivo and several studies suggest that increases in neuronal glucose uptake and/or alterations to the activity of matrix metalloproteinases (MMPs) may improve memory and increase dendritic spine density. We aimed to identify the potential mechanism by which HFI-419 enhances memory by utilizing rat primary cultures of hippocampal cells. Alterations to dendritic spine density were assessed in the presence of varying concentrations of HFI-419 at different stages of hippocampal cell development. In addition, glucose uptake and changes to spine density were assessed in the presence of indinavir, an inhibitor of the glucose transporter 4 (GLUT4 ), or the matrix metalloprotease inhibitor CAS 204140-01-2. We confirmed that inhibition of IRAP activity with HFI-419 enhanced spatial working memory in rats, and determined that this enhancement may be driven by GLUT4 -mediated changes to dendritic spine density. We observed that IRAP inhibition increased dendritic spine density prior to peak dendritic growth in hippocampal neurons, and that spine formation was inhibited when GLUT4 -mediated glucose uptake was blocked. In addition, during the peak phase of dendritic spine growth, the effect of IRAP inhibition on enhancement of dendritic spine density resulted specifically in an increase in the proportion of mushroom/stubby-like spines, a morphology associated with memory and learning. Moreover, these spines were deemed to be functional based on their expression of the pre-synaptic markers vesicular glutamate transporter 1 and synapsin. Overall, or findings suggest that IRAP inhibitors may facilitate memory by increasing hippocampal dendritic spine density via a GLUT4 -mediated mechanism. Cover Image for this issue: doi: 10.1111/jnc.14745.
Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Espinhas Dendríticas/metabolismo , Glucose/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-DawleyRESUMO
Insulin-regulated aminopeptidase (IRAP), an enzyme that cleaves vasoactive peptides including oxytocin and vasopressin, is suggested to play a role in pregnancy and the onset of preeclampsia. Our aim was to examine the contribution of IRAP to arterial pressure regulation and placental development during pregnancy in mice. Mean arterial pressure and heart rate were measured via radiotelemetry in 12-week-old female wild-type and IRAP knockout mice. Females were time-mated with males of the same genotype. Placentae were collected at embryonic day 18.5 for histological analysis. Basal heart rate was â¼40 bpm lower in IRAP knockout females compared with wild-type females. The increase in heart rate across gestation was greater in IRAP knockout females than wild-type females. Neither basal nor gestational mean arterial pressure was different between wildtype and IRAP knockout females. Urine output and water intake of IRAP knockout mice were â¼45% less than wild-type mice at late gestation. IRAP deficiency had no effect on fetal weight. Morphological assessment of placentae revealed that IRAP deficiency was associated with reduced labyrinth surface area and accumulation of glycogen in the junctional zone. Our data demonstrate that IRAP deficiency alters maternal fluid handling and impairs placental labyrinth expansion at late gestation, indicating that IRAP contributes to the normal adaptions to pregnancy.
Assuntos
Adaptação Fisiológica , Cistinil Aminopeptidase/deficiência , Coração/fisiopatologia , Placentação , Animais , Aquaporina 2/metabolismo , Pressão Arterial , Cardiomegalia/complicações , Cistinil Aminopeptidase/metabolismo , Feminino , Frequência Cardíaca , Hemodinâmica , Rim/metabolismo , Camundongos Knockout , Gravidez , Proteinúria/complicações , Equilíbrio HidroeletrolíticoRESUMO
Within the hippocampus, the major somatostatin (SRIF) receptor subtype, the sst2A receptor, is localized at postsynaptic sites of the principal neurons where it modulates neuronal activity. Following agonist exposure, this receptor rapidly internalizes and recycles slowly through the trans-Golgi network. In epilepsy, a high and chronic release of somatostatin occurs, which provokes, in both rat and human tissue, a decrease in the density of this inhibitory receptor at the cell surface. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. In addition, IRAP ligands display anticonvulsive properties. We therefore sought to assess by in vitro and in vivo experiments in hippocampal rat tissue whether IRAP ligands could regulate the trafficking of the sst2A receptor and, consequently, modulate limbic seizures. Using pharmacological and cell biological approaches, we demonstrate that IRAP ligands accelerate the recycling of the sst2A receptor that has internalized in neurons in vitro or in vivo. Most importantly, because IRAP ligands increase the density of this inhibitory receptor at the plasma membrane, they also potentiate the neuropeptide SRIF inhibitory effects on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures and possibly for other neurological conditions in which downregulation of G-protein-coupled receptors occurs. SIGNIFICANCE STATEMENT: The somatostatin type 2A receptor (sst2A) is localized on principal hippocampal neurons and displays anticonvulsant properties. Following agonist exposure, however, this receptor rapidly internalizes and recycles slowly. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. We therefore assessed by in vitro and in vivo experiments whether IRAP could regulate the trafficking of this receptor. We demonstrate that IRAP ligands accelerate sst2A recycling in hippocampal neurons. Because IRAP ligands increase the density of sst2A receptors at the plasma membrane, they also potentiate the effects of this inhibitory receptor on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures.
Assuntos
Cistinil Aminopeptidase/metabolismo , Hipocampo/metabolismo , Receptores de Somatostatina/metabolismo , Convulsões/metabolismo , Convulsões/prevenção & controle , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Sistema Límbico/metabolismo , Masculino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos WistarRESUMO
Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.
Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Espinhas Dendríticas/metabolismo , Dissulfetos/metabolismo , Compostos Macrocíclicos/metabolismo , Animais , Células Cultivadas , Cristalografia , Cistinil Aminopeptidase/análise , Espinhas Dendríticas/química , Dissulfetos/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Células HEK293 , Humanos , Compostos Macrocíclicos/farmacologia , Gravidez , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-DawleyRESUMO
Central infusion of Insulin-Regulated Aminopeptidase (IRAP) inhibitors improves memory in both normal rodents and in models of memory deficit. However, in contrast, the global IRAP knockout mice (KO) demonstrate age-accelerated spatial memory deficits and no improvements in performance in any memory tasks. Potentially, the observed memory deficit could be due to the absence of IRAP in the developing brain. We therefore generated a postnatal forebrain neuron-specific IRAP knockout mouse line (CamKIIalphaCre; IRAPlox/lox). Unexpectedly, we demonstrated that postnatal deletion of IRAP in the brain results in significant deficits in both spatial reference and object recognition memory at three months of age, although spatial working memory remained intact. These results indicate a significant role for IRAP in postnatal brain development and normal function of the hippocampus in adulthood.
Assuntos
Cistinil Aminopeptidase/metabolismo , Transtornos da Memória/metabolismo , Reconhecimento Psicológico/fisiologia , Memória Espacial/fisiologia , Fatores Etários , Animais , Cistinil Aminopeptidase/deficiência , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos KnockoutRESUMO
The enzyme, insulin regulated aminopeptidase (IRAP), is expressed in multiple immune cells such as macrophages, dendritic cells and T cells, where it plays a role in regulating the innate and adaptive immune response. There is a genetic association between IRAP and survival outcomes in patients with septic shock where a variant of its gene was found to be associated with increased 28-day mortality. This study investigated the role for IRAP in a lipopolysaccharide (LPS)-induced inflammatory response which is thought to model facets of the systemic inflammation observed in the early stages of human gram-negative sepsis. The frequencies and activation of splenic immune cell populations were investigated in the IRAP knockout (KO) mice compared to the wildtype controls over a period of 4-, 24-, or 48-hours following LPS stimulation. Dendritic cells isolated from the spleen of female IRAP KO mice, displayed significant increases in the activation markers CD40, CD86 and MHCII at 24 hours after LPS induction. A modest heightened pro-inflammatory response to LPS was observed with increased expression of activation marker CD40 in M1 macrophages from male IRAP knockout mice. Observations in vitro in bone marrow-derived macrophages (BMDM) revealed a heightened pro-inflammatory response to LPS with significant increases in the expression of CD40 in IRAP deficient cells compared with BMDM from WT mice. The heightened LPS-induced response was associated with increased pro-inflammatory cytokine secretion in these BMDM cells. A genotype difference was also detected in the BMDM from female mice displaying suppression of the LPS-induced increases in the activation markers CD40, CD86, CD80 and MHCII in IRAP deficient cells. Thus, this study suggests that IRAP plays specific time- and sex-dependent roles in the LPS-induced inflammatory response in dendritic cells and macrophages.
Assuntos
Cistinil Aminopeptidase , Células Dendríticas , Inflamação , Lipopolissacarídeos , Macrófagos , Camundongos Knockout , Animais , Lipopolissacarídeos/imunologia , Feminino , Masculino , Camundongos , Cistinil Aminopeptidase/metabolismo , Cistinil Aminopeptidase/genética , Inflamação/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos Endogâmicos C57BL , Fatores Sexuais , Fatores de TempoRESUMO
Oxytocin is a neuromodulator with antidepressant-like effects. In vitro, oxytocin is rapidly cleaved by insulin-regulated aminopeptidase (IRAP). Oxytocin metabolites are known to exert strong central activities that are different from the effects of the parent molecule. Our goal is to investigate in vivo whether IRAP deletion modifies the antidepressant-like effects of oxytocin. Male and female C57Bl/6 mice, IRAP wild-type (IRAP(+/+)) and knock-out (IRAP(-/-)) mice were injected subcutaneously with saline, oxytocin or oxytocin combined with angiotensin IV. One hour after injection, immobility was timed during a 5 min forced swim that was preceded by an open field to study locomotor behaviour. Oxytocin induced antidepressant-like effects in male (0.25 mg/kg oxytocin) and female (0.15 mg/kg oxytocin) C57Bl/6 mice subjected to the forced swim test. Oxytocin did not influence locomotor behaviour in mice, as shown with the open field. These findings were reproduced in transgenic male (aged 3-6 months) and female (aged 12-18 months) IRAP(+/+) mice. However, the major findings of our study were that the antidepressant-like effect was reversed in angiotensin IV treated IRAP(+/+) mice and was completely absent in age- and gender-matched IRAP(-/-) mice. The lack of an antidepressant-like effect of oxytocin in young male and middle-aged female IRAP(-/-) mice attributes an important role to IRAP in mediating this effect.
Assuntos
Aminopeptidases/metabolismo , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Ocitocina/uso terapêutico , Fatores Etários , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Animais , Antidepressivos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cistinil Aminopeptidase/deficiência , Cistinil Aminopeptidase/genética , Depressão/sangue , Depressão/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Feminino , Imipramina/uso terapêutico , Resposta de Imobilidade Tônica/efeitos dos fármacos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Ocitocina/sangue , Ocitocina/farmacologiaRESUMO
There is growing interest in the use of the enzyme, insulin regulated aminopeptidase (IRAP), as a biomarker for conditions such as cardio-metabolic diseases and ischemic stroke, with upregulation in its tissue expression in these conditions. However, quantification of circulating IRAP has been hampered by difficulties in detecting release of the truncated, soluble form of this enzyme into the blood stream. The current study aimed to develop a sandwich ELISA using novel antibodies directed towards the soluble portion of IRAP (sIRAP), to improve accuracy in detection and quantification of low levels of sIRAP in plasma. A series of novel anti-IRAP antibodies were developed and found to be highly specific for sIRAP in Western blots. A sandwich ELISA was then optimised using two distinct antibody combinations to detect sIRAP in the low nanogram range (16-500 ng/ml) with a sensitivity of 9 ng/ml and intra-assay variability < 10%. Importantly, the clinical validity of the ELISA was verified by the detection of significant increases in the levels of sIRAP throughout gestation in plasma samples from pregnant women. The specific and sensitive sandwich ELISA described in this study has the potential to advance the development of IRAP as a biomarker for certain diseases.
Assuntos
Aminopeptidases , Insulina , Humanos , Feminino , Gravidez , Ensaio de Imunoadsorção Enzimática , Anticorpos , Western Blotting , Cistinil Aminopeptidase/metabolismoRESUMO
Stroke is a leading cause of mortality and morbidity with a paucity of effective pharmacological treatments. We have previously identified insulin-regulated aminopeptidase (IRAP) as a potential target for the development of a new class of drugs for the treatment of stroke, as global deletion of this gene in mice significantly protected against ischemic damage. In the current study, we demonstrate that small molecular weight IRAP inhibitors reduce infarct volume and improve neurological outcome in a hypertensive animal model of ischemic stroke. The effects of two structurally distinct IRAP inhibitors (HFI419 or SJM164) were investigated in a model of stroke where the middle cerebral artery was transiently occluded with endothelin-1 in the conscious spontaneously hypertensive rat. IRAP inhibitor was administered into the lateral ventricle at 2 or 6 h after stroke, with subsequent doses delivered at 24, 48 and 70 h post-stroke. Functional outcomes were assessed prior to drug treatment, and on day 1 and 3 post-stroke. Histological analyses and neuroinflammatory cytokine profiling were conducted at 72 and 24 h post-stroke respectively. IRAP inhibitor treatment following stroke significantly reduced infarct volume and improved neurological and motor deficits. These protective effects were maintained even when the therapeutic window was extended to 6 h. Examination of the cellular architecture at 72 h post-stroke demonstrated that IRAP expression was upregulated in CD11b positive cells and activated astrocytes. Furthermore, IRAP inhibitor treatment significantly increased gene expression for interleukin 6 and C-C motif chemokine ligand 2 in the ischemic core. This study provides proof-of-principle that selective inhibition of IRAP activity with two structurally distinct IRAP inhibitors reduces infarct volume and improves functional outcome even when the first dose is administered 6 h post-stroke. This is the first direct evidence that IRAP inhibitors are a class of drug with potential use in the treatment of ischemic stroke.
Assuntos
Cistinil Aminopeptidase , AVC Isquêmico , Animais , Camundongos , Ratos , Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Infarto , AVC Isquêmico/tratamento farmacológico , Neuroproteção , Ratos Endogâmicos SHRRESUMO
An imbalance in the circulatory and organ-specific renin-angiotensin system (RAS) pathways is associated with age-related dysfunction and disease including cardiovascular burden and more recently Alzheimer's disease (AD). It is currently unclear whether an age-associated imbalance in components of the RAS within the brain precedes the onset of AD or whether a RAS imbalance is associated with the onset of disease pathology and cognitive decline. Angiotensin-converting enzyme-1 (ACE-1) and -2 (ACE-2) protein (ELISA) and enzyme activity (FRET assay), markers of the classical and counter-regulatory RAS axis respectively, and Ang-II and Ang-(1-7) peptide levels (ELISA), were measured in the left cortex across four transgenic AD mouse models of amyloid pathology (5xFAD - 2, 6, and 12 months of age; Apd9 - 3-4, 12, and 18 months of age; Tg2576 - 3-4 and 24 months of age; and PDAPP - 3-4, 7, 11, 15, and 18 months of age) and littermate wild-type (WT) controls. ACE-1 level, and enzyme activity, was unaltered in relation to age in WT mice and across all four models. In contrast, ACE-2 level and enzyme activity, was reduced and Ang-II increased with ageing in both WT animals and disease models. The changes in ACE-2 and Ang-II in AD models mirrored WT mice, except for the 5xFAD model, when the reduction in ACE-2 (and elevated Ang-II) was observed at a younger age. These data indicate an age-related dysregulation of brain RAS is likely to be driven by a reduction in ACE-2. The reduction in ACE-2 occurs at a young age, coinciding with early pathological changes and the initial deposition of Aß, and preceding neuronal loss and cognitive decline, in the transgenic AD models. However, the age-related loss was mirrored in WT mice suggesting that the change was independent of pathological Aß deposition.
RESUMO
Presentation of exogenous antigens on MHC class I molecules, termed cross-presentation, is essential for the induction of CD8 T-cell responses and is carried out by specialized dendritic cell (DC) subsets. The mechanisms involved remain unclear. It has been proposed that antigens could be transported by endocytic receptors, such as the mannose receptor (MR) in the case of soluble ovalbumin, into early endosomes in which the cross-presentation machinery would be recruited. In these endosomal compartments, peptides would be trimmed by the aminopeptidase IRAP before loading onto MHC class I molecules. Here, we have investigated the contribution of this pathway to cross-presentation by steady-state CD8(+) DC and inflammatory monocyte-derived DC (moDC) generated in vivo. We demonstrate that IRAP and MR are dispensable for cross-presentation by CD8(+) DC and for cross-priming. Moreover, we could not find any evidence for diversion of endocytosed antigen into IRAP-containing endosomes in these cells. However, cross-presentation was impaired in moDC deficient in IRAP or MR, confirming the role of these two molecules in inflammatory DC. These results demonstrate that the mechanisms responsible for cross-priming by steady-state and inflammatory DC are different, which has important implications for vaccine design.
Assuntos
Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Imunidade Celular/imunologia , Inflamação/imunologia , Modelos Imunológicos , Animais , Western Blotting , Cistinil Aminopeptidase/imunologia , Citometria de Fluxo , Lectinas Tipo C/imunologia , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/imunologia , Receptores de Superfície Celular/imunologiaRESUMO
The development of inhibitors of insulin-regulated aminopeptidase (IRAP), a membrane-bound zinc metallopeptidase, is a promising approach for the discovery of drugs for the treatment of memory loss such as that associated with Alzheimer's disease. There is, however, no consensus in the literature about the mechanism by which inhibition occurs. Sequence alignments, secondary structure predictions, and homology models based on the structures of recently determined related metallopeptidases suggest that the extracellular region consists of four domains. Partial proteolysis and mass spectrometry reported here confirm some of the domain boundaries. We have produced purified recombinant fragments of human IRAP on the basis of these data and examined their kinetic and biochemical properties. Full-length extracellular constructs assemble as dimers with different nonoverlapping fragments dimerizing as well, suggesting an extended dimer interface. Only recombinant fragments containing domains 1 and 2 possess aminopeptidase activity and bind the radiolabeled hexapeptide inhibitor, angiotensin IV (Ang IV). However, fragments lacking domains 3 and 4 possess reduced activity, although they still bind a range of inhibitors with the same affinity as longer fragments. In the presence of Ang IV, IRAP is resistant to proteolysis, suggesting significant conformational changes occur upon binding of the inhibitor. We show that IRAP has a second Zn(2+) binding site, not associated with the catalytic region, which is lost upon binding Ang IV. Modulation of activity caused by domains 3 and 4 is consistent with a conformational change regulating access to the active site of IRAP.
Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Doença de Alzheimer/tratamento farmacológico , Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Sítios de Ligação , Domínio Catalítico , Cistinil Aminopeptidase/genética , Cistinil Aminopeptidase/metabolismo , Bases de Dados de Proteínas , Humanos , Hidrólise , Cinética , Modelos Moleculares , Terapia de Alvo Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Zinco/metabolismoRESUMO
The role of microglia cells in Alzheimer's disease (AD) is well recognized, however their molecular and functional diversity remain unclear. Here, we isolated amyloid plaque-containing (using labelling with methoxy-XO4, XO4+) and non-containing (XO4-) microglia from an AD mouse model. Transcriptomics analysis identified different transcriptional trajectories in ageing and AD mice. XO4+ microglial transcriptomes demonstrated dysregulated expression of genes associated with late onset AD. We further showed that the transcriptional program associated with XO4+ microglia from mice is present in a subset of human microglia isolated from brains of individuals with AD. XO4- microglia displayed transcriptional signatures associated with accelerated ageing and contained more intracellular post-synaptic material than XO4+ microglia, despite reduced active synaptosome phagocytosis. We identified HIF1α as potentially regulating synaptosome phagocytosis in vitro using primary human microglia, and BV2 mouse microglial cells. Together, these findings provide insight into molecular mechanisms underpinning the functional diversity of microglia in AD.
Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Fagocitose/fisiologia , Placa Amiloide/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Placa Amiloide/genética , TranscriptomaRESUMO
Inhibitors of insulin-regulated aminopeptidase (IRAP) improve memory and are being developed as a novel treatment for memory loss. In this study, the binding of a class of these inhibitors to human IRAP was investigated using molecular docking and site-directed mutagenesis. Four benzopyran-based IRAP inhibitors with different affinities were docked into a homology model of the catalytic site of IRAP. Two 4-pyridinyl derivatives orient with the benzopyran oxygen interacting with the Zn(2+) ion and a direct parallel ring-stack interaction between the benzopyran rings and Phe544. In contrast, the two 4-quinolinyl derivatives orient in a different manner, interacting with the Zn(2+) ion via the quinoline nitrogen, and Phe544 contributes an edge-face hydrophobic stacking point with the benzopyran moiety. Mutagenic replacement of Phe544 with alanine, isoleucine, or valine resulted in either complete loss of catalytic activity or altered hydrolysis velocity that was substrate-dependent. Phe544 is also important for inhibitor binding, because these mutations altered the K(i) in some cases, and docking of the inhibitors into the corresponding Phe544 mutant models revealed how the interaction might be disturbed. These findings demonstrate a key role of Phe544 in the binding of the benzopyran IRAP inhibitors and for optimal positioning of enzyme substrates during catalysis.
Assuntos
Benzopiranos/metabolismo , Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Fenilalanina/fisiologia , Benzopiranos/química , Benzopiranos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/fisiologia , Linhagem Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fenilalanina/química , Especificidade por Substrato/fisiologiaRESUMO
The AT(4) ligands, angiotensin IV and LVV-hemorphin 7, elicit robust effects on facilitating memory by binding to a specific site in the brain historically termed the angiotensin AT(4) receptor. The identification of the AT(4) receptor as insulin-regulated aminopeptidase (IRAP) is controversial, with other proteins speculated to be the target(s) of these peptides. In this study we have utilized IRAP knockout mice to investigate IRAP in the brain. We demonstrate that the high-affinity binding site for angiotensin IV is absent in IRAP knockout mice brain sections in parallel with the loss of IRAP immunostaining, providing irrefutable proof that IRAP is the specific high-affinity binding site for AT(4) ligands. However, our characterization of the behavioural phenotype of the IRAP knockout mice revealed a totally unexpected finding. In contrast to the acute effects of IRAP inhibitors in enhancing memory, deletion of the IRAP gene resulted in mice with an accelerated, age-related decline in spatial memory that was only detected in the Y maze paradigm. Moreover, no alterations in behaviour of the IRAP knockout mice were observed that could assist in elucidating the endogenous substrate(s). Our results highlight the importance of analysing the behavioural phenotype of knockout mice across different ages and in distinct memory paradigms.
Assuntos
Envelhecimento/metabolismo , Angiotensina II/análogos & derivados , Encéfalo/metabolismo , Cistinil Aminopeptidase/metabolismo , Transtornos da Memória/metabolismo , Percepção Espacial/fisiologia , Angiotensina II/metabolismo , Animais , Cistinil Aminopeptidase/genética , Transportador de Glucose Tipo 4/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Testes Neuropsicológicos , Fenótipo , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Reconhecimento Psicológico/fisiologiaRESUMO
As a member of the M1 family of aminopeptidases, insulin regulated aminopeptidase (IRAP) is characterized by distinct binding motifs at the active site in the C-terminal domain that mediate the catalysis of peptide substrates. However, what makes IRAP unique in this family of enzymes is that it also possesses trafficking motifs at the N-terminal domain which regulate the movement of IRAP within different intracellular compartments. Research on the role of IRAP has focused predominantly on the C-terminus catalytic domain in different physiological and pathophysiological states ranging from pregnancy to memory loss. Many of these studies have utilized IRAP inhibitors, that bind competitively to the active site of IRAP, to explore the functional significance of its catalytic activity. However, it is unknown whether these inhibitors are able to access intracellular sites where IRAP is predominantly located in a basal state as the enzyme may need to be at the cell surface for the inhibitors to mediate their effects. This property of IRAP has often been overlooked. Interestingly, in some pathophysiological states, the distribution of IRAP is altered. This, together with the fact that IRAP possesses trafficking motifs, suggest the localization of IRAP may play an important role in defining its physiological or pathological functions and provide insights into the interplay between the two functional domains of the protein.
RESUMO
The aim of our study was to determine the influence of inhibition of insulin-regulated aminopeptidase/oxytocinase (IRAP) on glucose tolerance and metabolism of skeletal muscle and visceral adipose tissue in obese Zucker rats. Obese Zucker rats administered with IRAP inhibitor-HFI-419 at a dose of 29 µg/100 g BW/day by osmotic minipumps implanted subcutaneously for 2 weeks. Two-hour intraperitoneal glucose tolerance test (ipGTT) was performed in fasting rats. Plasma oxytocin levels were measured by enzyme immunoassay after plasma extraction. In the musculus quadriceps and epididymal adipose tissue, the expression of factors affecting tissue oxidative status and metabolism was determined by real-time qPCR and/or Western blot analysys. The plasma and tissue enzymatic activities were determined by colorimetric or fluorometric method. Circulated oxytocin levels in obese animals strongly tended to increase after HFI-419 administration. This was accompanied by significantly improved glucose utilization during ipGTT and decreased area under the curve (AUC) for glucose. In skeletal muscle IRAP inhibitor treatment up-regulated enzymes of antioxidant defense system - superoxide dismutase 1 and 2 and improved insulin signal transduction pathway. HFI-419 increased skeletal muscle aminopeptidase A expression and activity and normalized its plasma levels in obese animals. In epididymal adipose tissue, gene expression of markers of inflammation and adipocyte hypertrophy was down-regulated in obese rats after HFI-419 treatment. Our results demonstrate that IRAP inhibition improves whole-body glucose tolerance in insulin-resistant Zucker fatty rats and that this metabolic effect of HFI-419 involves ameliorated redox balance in skeletal muscle.
RESUMO
Macrocyclic analogues of the linear hexapeptide, angiotensin IV (AngIV) have proved to be potent inhibitors of insulin-regulated aminopeptidase (IRAP, oxytocinase, EC 3.4.11.3). Along with higher affinity, macrocycles may also offer better metabolic stability, membrane permeability and selectivity, however predicting the outcome of particular cycle modifications is challenging. Here we describe the development of a series of macrocyclic IRAP inhibitors with either disulphide, olefin metathesis or lactam bridges and variations of ring size and other functionality. The binding mode of these compounds is proposed based on molecular dynamics analysis. Estimation of binding affinities (ΔG) and relative binding free energies (ΔΔG) with the linear interaction energy (LIE) method and free energy perturbation (FEP) method showed good general agreement with the observed inhibitory potency. Experimental and calculated data highlight the cumulative importance of an intact N-terminal peptide, the specific nature of the macrocycle, the phenolic oxygen and the C-terminal functionality.
RESUMO
The IRAP ligands Angiotensin IV (Ang IV) and LVV-haemorphin 7 (LVV-H7) enhance performance in a range of memory paradigms in normal rats and ameliorate memory deficits in rat models for amnesia. The mechanism by which these peptides facilitate memory remains to be elucidated. In recent in vitro experiments, we demonstrated that Ang IV and LVV-H7 potentiate activity-evoked glucose uptake into hippocampal neurons. This raises the possibility that IRAP ligands may facilitate memory in hippocampus-dependent tasks through enhancement of hippocampal glucose uptake. Acute intracerebroventricular (i.c.v.) administration of 1nmol Ang IV or 0.1nmol LVV-H7 in 3 months-old Sprague-Dawley rats enhanced spatial working memory in the plus maze spontaneous alternation task. Extracellular hippocampal glucose levels were monitored before, during and after behavioral testing using in vivo microdialysis. Extracellular hippocampal glucose levels decreased significantly to about 70% of baseline when the animals explored the plus maze, but remained constant when the animals were placed into a novel control chamber. Ang IV and LVV-H7 did not significantly alter hippocampal glucose levels compared to control animals in the plus maze or control chamber. Both peptides had no effect on hippocampal blood flow as determined by laser Doppler flowmetry, excluding that either peptide increased the hippocampal supply of glucose. We demonstrated for the first time that Ang IV and LVV-H7 enhance spatial working memory in the plus maze spontaneous alternation task but no in vivo evidence was found for enhanced hippocampal glucose uptake or blood flow.
Assuntos
Angiotensina II/análogos & derivados , Hemoglobinas/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Percepção Espacial/efeitos dos fármacos , Vasoconstritores/farmacologia , Angiotensina II/farmacologia , Animais , Cateterismo , Circulação Cerebrovascular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Fluxômetros , Glucose/metabolismo , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/fisiologia , Microdiálise , Atividade Motora/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Percepção Espacial/fisiologia , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologiaRESUMO
Approximately one-quarter of people over the age of 65 are estimated to suffer some form of cognitive impairment, underscoring the need for effective cognitive-enhancing agents. Insulin-regulated aminopeptidase (IRAP) is potentially an innovative target for the development of cognitive enhancers, as its peptide inhibitors exhibit memory-enhancing effects in both normal and memory-impaired rodents. Using a homology model of the catalytic domain of IRAP and virtual screening, we have identified a class of nonpeptide, small-molecule inhibitors of IRAP. Structure-based computational development of an initial "hit" resulted in the identification of two divergent families of compounds. Subsequent medicinal chemistry performed on the highest affinity compound produced inhibitors with nanomolar affinities (K(i) 20-700 nM) for IRAP. In vivo efficacy of one of these inhibitors was demonstrated in rats with an acute dose (1 nmol in 1 microl) administered into the lateral ventricles, improving performance in both spatial working and recognition memory paradigms. We have identified a family of specific IRAP inhibitors that is biologically active which will be useful both in understanding the physiological role of IRAP and potentially in the development of clinically useful cognitive enhancers. Notably, this study also provides unequivocal proof of principal that inhibition of IRAP results in memory enhancement.