RESUMO
Quorum sensing (QS) can regulate the production of multiple functional factors in bacteria, but the process of identifying its regulatory targets is very complex and labor-intensive. In this study, an efficient and rapid method to find QS targets through prediction was used. The genome of Lactiplantibacillus plantarum (L. plantarum) L3 was sequenced and characterized, and then linked the L. plantarum L3 genome to the STRING database for QS system regulatory target prediction. A total of 3,167,484 base pairs (bps) were examined from the genome of L. plantarum L3, and 30 QS-related genes were discovered (including luxS). The STRING database prediction indicated that the 30 QS-related genes are mainly involved in the regulation of nine metabolic pathways. Furthermore, metE, metK, aroB, cysE, and birA1 were predicted to be regulatory targets of the LuxS/AI-2 QS system, and these five targets were validated based on quantitative real-time PCR and content determination. Successful elucidation of the LuxS/AI-2 QS system's key targets and regulation mechanism in L. plantarum L3 demonstrated the effectiveness of the new approach for predicting QS targets and provides a scientific basis for future work on improving regulation of functional factor production.
Assuntos
Proteínas de Bactérias , Biofilmes , Regulação Bacteriana da Expressão Gênica , Lisina , Percepção de Quorum , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Lisina/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Genoma Bacteriano , Liases de Carbono-EnxofreRESUMO
This study identified characteristic whey proteins from Zhongdian Yak (ZY), Diqing Yellow Cattle (DYC), and Cattle Yak (CY), revealing insights into their potential functions and released peptides. A total of 118 whey proteins were quantified in milk obtained from the three breeds of cattle, including seven characteristic proteins (IGL@ protein, 40S ribosomal protein S9, calreticulin, etc.) in CY milk and two characteristic proteins (RNA helicase and uncharacterized protein (A0A3Q1LFQ2)) in ZY milk. These characteristic proteins are involved in the phagosome and Fc gamma R-mediated phagocytosis pathways, exhibiting immunoprotective activities, verified through molecular docking. Furthermore, the molecular docking results showed five whey proteins (IGL@ protein, rho GDP-dissociation inhibitor 1, small monomeric GTPase, action-like protein 3, and adenylyl cyclase-associated protein) interacted with TLR4 through multiple hydrogen and hydrophobic bonds. Therefore, these proteins may exert immunomodulatory functions by inhibiting TLR4. Meanwhile, whey proteins produced bioactive peptides, such as antioxidant peptides and ACE inhibitory peptides after simulated gastrointestinal digestion (SGID). The whey proteins and bioactive peptides from CY exhibited more types and activities than the ZY and DYC whey proteins. This study provides a theoretical basis for promoting formula milk powder production.
RESUMO
The phenyllactic acid (PLA) produced by lactic acid bacteria (LAB) inhibits fungi and facilitates the quality control of fermented milk. A strain of Lactiplantibacillus plantarum L3 (L. plantarum L3) with high PLA production was screened in the pre-laboratory, but the mechanism of its PLA formation is unclear. The amount of autoinducer-2 (AI-2) increased with increasing culture time, as did cell density and PLA. The results in this study suggest that PLA production in L. plantarum L3 may be regulated by the LuxS/AI-2 Quorum Sensing (QS) system. Tandem mass tag (TMT) quantitative proteomics analysis showed that a total of 1291 differentially expressed proteins (DEPs) were quantified in the incubated for 24 h compared with the incubated for 2 h, of which 516 DEPs were up-regulated and 775 DEPs were down-regulated. Among them, S-ribosomal homocysteine lyase (luxS), aminotransferase (araT), and lactate dehydrogenase (ldh) are the key proteins for PLA formation. The DEPs were mainly involved in the QS pathway and the core pathway of PLA synthesis. Furanone effectively inhibited the production of L. plantarum L3 PLA. In addition, Western blot analysis demonstrated that luxS, araT, and ldh were the key proteins regulating PLA production. This study reveals the regulatory mechanism of PLA based on the LuxS/AI-2 QS system, which provides a theoretical basis for the efficient and large-scale production of PLA in industries in the future.