Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 107: 104538, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33349456

RESUMO

Tuberculosis is the leading cause of death globally among infectious diseases. Due to the development of resistance of Mycobacterium tuberculosis to currently used anti-TB medicines and the TB-HIV synergism the urgent need to develop novel anti-mycobacterial agents has been realized. The drug-to-target path has been the successful strategy for new anti-TB drug development. All the six drug candidates that have shown promise during the clinical trials and some of these being approved for treatment against MDR TB are the results of phenotype screening of small molecule compound libraries. In search of compounds belonging to novel pharmacophoric class that could be subjected to whole cell assay to generate new anti-TB leads the benzo[d]imidazole-2-carboxamide moiety has been designed as a novel anti-TB scaffold. The design was based on the identification of the benzimidazole ring as a prominent substructure of the FDA approved drugs, the structural analysis of reported anti-TB benzimidazoles, and the presence of the C-2 carboxamido functionality in novel bioisoteric anti-TB benzothiazoles. Twenty seven final compounds have been prepared via NH4Cl-catalyzed amidation of ethyl benzo[d]imidazole-2-carboxylates, as the required intermediates, obtained through a green "all water" one-pot synthetic route following a tandem N-arylation-reduction-cyclocondensation procedure. All of the synthesised target compounds were assessed for anti-TB potential using H37Rv ATCC27294 strain. Thirteen compounds were found with better MIC (0.78-6.25 µg/mL) than the standard drugs and being non-cytotoxic nature (<50% inhibition against RAW 264.7 cell lines at 50 µg/mL). The compound 8e exhibited best anti-TB activity (MIC: 2.15 µM and selectivity index: > 60) and a few others e.g., 8a, 8f, 8k and 8o are the next best anti-TB hits (MIC: 1.56 µg/mL). The determination and analysis of various physiochemical parameters revealed favorable druglike properties of the active compounds. The compounds 8a-l and 8o, with MIC values of ≤ 6.25 µg/mL, have high LipE values (10.66-11.77) that are higher than that of the suggested value of > 6 derived from empirical evidence for quality drug candidates and highlight their therapeutic potential. The highest LipE value of 11.77 of the best active compound 8e with the MIC of 0.78 µg/mL indicates its better absorption and clearance as a probable clinical candidate for anti-TB drug discovery. These findings highlight the discovery of benzimidazole-2-carboxamides for further development as new anti-TB agents.


Assuntos
Amidas/química , Antituberculosos/síntese química , Desenho de Fármacos , Imidazóis/química , Amidas/farmacologia , Amidas/uso terapêutico , Cloreto de Amônio/química , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Catálise , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Células RAW 264.7 , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
2.
Bioorg Chem ; 99: 103774, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32224336

RESUMO

In search for new molecular entities as anti-TB agents, the benzimidazoquinazoline polyheterocyclic scaffold has been designed adopting the scaffold hopping strategy. Thirty-two compounds have been synthesized through an improved tandem decarboxylative nucleophilic addition cyclocondensation reaction of o-phenylenediamine with isatoic anhydride followed by further cyclocondensation of the intermediately formed 2-(o-aminoaryl)benzimidazole with trialkyl orthoformate/acetate. The resultant benzimidazoquinazolines were evaluated in vitro for anti-TB activity against M. tuberculosis H37Rv (ATCC27294 strain). Fourteen compounds exhibiting MIC values in the range of 0.4-6.25 µg/mL were subjected to cell viability test against RAW 264.7 cell lines and were found to be non-toxic (<30% inhibition at 50 µg/mL). The active compounds were further evaluated against INH resistant Mtb strains. The most active compound 6x [MIC (H37Rv) of 0.4 µg/mL] and the compound 6d [MIC (H37Rv) of 0.78 µg/mL] were also found to be active against INH resistant Mtb strain with MIC values of 12.5 and 0.78 µg/mL, respectively.


Assuntos
Antituberculosos/farmacologia , Benzimidazóis/farmacologia , Desenho de Fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Quinazolinas/farmacologia , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/síntese química , Antituberculosos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Células RAW 264.7 , Relação Estrutura-Atividade , Tuberculose/microbiologia
3.
Org Biomol Chem ; 17(16): 4129-4138, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30969300

RESUMO

The tautomeric preference of guanylhydrazones towards the azine form induces an unprecedented intramolecular to intermolecular mechanistic switch during the I2-catalyzed oxidative transformation leading to 4,5-disubstituted-3-amino-1,2,4-triazoles in contrast to the reaction of semicarbazones and thiosemicarbazones to form 1,3,4-oxa/thiadiazoles. This intramolecular to intermolecular cyclization shift was established through control experiments and was attributed to the high energy demand (∼22 kcal mol-1) for the azine tautomer to adopt the s-cis conformation which is essential for the intramolecular reaction. An I2 induced protocol for an efficient and straightforward synthesis of 4,5-disubstituted-3-amino-1,2,4-triazoles has been developed via tandem oxidative transformation of guanylhydrazones (in its preferentially existing azine tautomeric form) with distinct advantages such as wide substrate scope, use of substoichiometric amounts of iodine, no requirement of external oxidizing agents, base free reaction conditions, short reaction time and moderate to good yields. The role of silver salt in improving the yield and shortening of reaction time was also highlighted.

4.
Bioorg Chem ; 82: 246-252, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391855

RESUMO

Tuberculosis (TB) is the leading cause of death worldwide due to bacterial infection. The scarcity of effective drugs to treat the disease and the compounded problems due to the development of resistance to the available therapeutics and TB-HIV synergism drive medicinal chemists to search for new anti-Mtb chemotypes. Towards this endeavor, the α-sulfonamidophosphonate moiety has been identified as new anti-Mtb chemotype through the scaffold hopping as the design strategy, development of an effective synthetic methodology using green chemistry tools, and evaluation of anti-TB activity of the synthesized compounds against Mtb (Mycobacterium tuberculosis) H37Rv. Out of the sixteen compounds, five have been found to have MIC values of 1.56 µg/mL and one 3.125 µg/mL. The five most active compounds are non-cytotoxic to RAW 264.7 (mouse leukemic monocyte macrophage) cell lines. The compounds are found to possess acceptable values of the various parameters for drug likeness in accordance with the Lipinski rule with the topological surface area (tPSA) of >70 that suggest eligibility of these new molecular entities for further consideration as potential drug candidates.


Assuntos
Antituberculosos/farmacologia , Organofosfonatos/farmacologia , Sulfonamidas/farmacologia , Animais , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/toxicidade , Desenho de Fármacos , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Organofosfonatos/síntese química , Organofosfonatos/química , Organofosfonatos/toxicidade , Células RAW 264.7 , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/toxicidade
5.
Chemistry ; 24(24): 6418-6425, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29504658

RESUMO

Remote N-heterocyclic carbenes (rNHCs), such as N-methyl-4-pyridylidene, are known to form coordination complexes with TMs. Herein, it is established that rNHCs can also coordinate to the N+ centre. Synthesis of some novel divalent NI complexes with the general formula (rNHC)→N+ ←(NHC) and (rNHC)→N+ ←(rNHC) was achieved, and X-ray diffraction studies supported the coordination bond character between the rNHCs and the N+ centre. Quantum chemical analysis established the presence of divalent NI character at the central nitrogen in these systems.

6.
J Org Chem ; 82(7): 3767-3780, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28299930

RESUMO

Cross-dehydrogenative coupling of biorelevant heterocyclic scaffolds with arylmethanes for aroylation during Pd(II)-catalyzed C(sp2)-H activation has been achieved through dioxygen activation by NHPI. Mass spectrometry and 1H NMR based kinetic isotope effect studies revealed C-H bond activation as the rate-determining step. Radical scavenging experiments indicated a radical pathway. The 1H NMR of an aliquot of reaction mixture and in situ trapping with 2-aminothiophenol revealed the formation of aldehyde during aerobic oxidation of the arylmethanes. The reaction has broad scope for different variations of the aroyl source and the directing group that includes benzothiazole, benzooxazole, pyridine, quinoxaline, pyrimidine, and azoarene. The benzylic methylene moiety was found to be the source of the aroyl carbon with the benzyl ether moiety being the most preferred followed by the carbonyl group of aryl aldehyde and the aryl methane. However, the ease of availability of aryl methanes makes them the most attractive as an aroyl source. A time dependent selective mono- and bis-aroylation can be achieved. The 1,3-diarylpyrimidines exhibited regioselective aroylation of the 2-phenyl moiety irrespective of the absence or presence of any substitutent (electron withdrawing or electron donating) in the 3-phenyl moiety. For unsymmetrical azoarenes, selective aroylation took place in the phenyl moiety bearing the substituent.

7.
J Org Chem ; 82(19): 10077-10091, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28846411

RESUMO

The cyclocondensation reaction of 2-aminothiophenols with 1,2-biselectrophiles such as ethyl glyoxalate and diethyl oxalate in aqueous medium leads to the formation of benzothiazole-2-carboxylates via the 5-endo-trig process contrary to Baldwin's rule. On the other hand, the reaction of 2-aminophenols/anilines produced the corresponding benzazine-3-ones or benzazine-2,3-diones via the 6-exo-trig process in compliance with Baldwin's rule. The mechanistic insights of these cyclocondensation reactions using the hard-soft acid-base principle, quantum chemical calculations (density functional theory), and orbital interaction studies rationalize the selectivity switch of benzothiazole-2-carboxylates versus benzazine-3-ones/benzazine-2,3-diones. The presence of water facilitates these cyclocondensation reactions by lowering of the energy barrier.

8.
Chemistry ; 22(3): 1088-96, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26615987

RESUMO

The dative-bond representation (L→E) in compounds with main group elements (E) has triggered extensive debate in the recent past. The scope and limits of this nonclassical coordination bond warrant comprehensive exploration. Particularly compounds with (L→N←L')(+) arrangement are of special interest because of their therapeutic importance. This work reports the design and synthesis of novel chemical species with the general structural formula (L→N←L')(+) carrying the unusual ligand cyclohexa-2,5-diene-4-(diaminomethynyl)-1-ylidene. Four species belonging to the (L→N←L')(+) class carrying this unconventional ligand were synthesized. Quantum chemical and X-ray diffraction analyses showed that the electronic and geometric parameters are consistent with those of already reported divalent N(I) compounds. The molecular orbital analysis, geometric parameters, and spectral data clearly support the L→N and N←L' interactions in these species. The newly identified ligand has the properties of a reactive carbene and high nucleophilicity.

9.
J Org Chem ; 81(17): 7574-7583, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27494613

RESUMO

Guanylhydrazones have been known for a long time and have wide applications in organic synthesis, medicinal chemistry, and material science; however, little attention has been paid toward their electronic and structural properties. Quantum chemical analysis on several therapeutically important guanylhydrazones indicated that all of them prefer the azine tautomeric state (by about 3-12 kcal/mol). A set of simple and conjugated azines were designed using quantum chemical methods, whose tautomeric preference toward the azine tautomer is in the range of 3-8 kcal/mol. Twenty new azines were synthesized and isolated in their neutral state. Variable temperature NMR study suggests existence of the azine tautomer even at higher temperatures with no traces of the hydrazone tautomer. The crystal structures of two representative compounds confirmed that the title compounds prefer to exist in their azine tautomeric form.

10.
Bioorg Med Chem Lett ; 26(24): 5960-5966, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27839684

RESUMO

Two series of quinoline-based compounds were designed, synthesised and evaluated for anti-tubercular activity against Mycobacterium tuberculosis H37Rv (ATCC 27294 strain). A new method for Friedländer quinoline synthesis has been developed in water under the catalytic influence of the Brønsted acid surfactant DBSA. Among the forty-two compounds tested for anti-TB activity, twenty-three compounds exhibited significant activity against the growth of M. tuberculosis (MIC 0.02-6.25µg/mL). In particular, the compounds 3b and 3c displayed excellent anti-TB activity with MIC values of 0.2 and 0.39µg/mL, respectively, and are more potent than the standard drugs E, Cfx and Z that are clinically used to treat TB. The cytotoxicity of the compounds with MIC ⩽6.25µg/mL was evaluated against Human Embryonic Kidney 293T cell lines and all of the active compounds were found to be nontoxic (<50% inhibition). The results suggest that the synthesised substituted quinolines are promising leads for development of new drug to treat TB.


Assuntos
Antituberculosos/farmacologia , Desenho de Fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Quinolinas/farmacologia , Tuberculose/tratamento farmacológico , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Tuberculose/microbiologia
11.
Bioorg Med Chem Lett ; 26(11): 2663-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095514

RESUMO

2-Styrylquinazolones are reported as a novel class of potent anti-mycobacterial agents. Forty-six target compounds have been synthesized using one pot reaction involving isatoic anhydride, amine, and triethyl orthoacetate followed by aldehyde to construct the 2-styrylquinazolone scaffold. The anti-mycobacterial potency of the compounds was determined against H37Rv strain. Twenty-six compounds exhibited anti-Mtb activity in the range of 0.40-6.25µg/mL. Three compounds 8c, 8d and 8ab showed MIC of 0.78µg/mL and were found to be non-toxic (<50% inhibition at 50µg/mL) to HEK 293T cell lines with the therapeutic index >64. The most potent compound 8ar showed MIC of 0.40µg/mL with the therapeutic index >125. An early structure activity relationship for this class of compounds has been established. The computational studies indicate the possibility of these compounds binding to the penicillin binding proteins (PBPs).


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Quinazolinas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 24(2): 613-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24361001

RESUMO

A new class of compounds based on S-benzylated guanylthiourea has been designed as potential PfDHFR inhibitors using computer aided methods (molecular electrostatic potential, molecular docking). Several compounds in this class have been synthesized starting from guanylthiourea and alkyl bromides. In vitro studies showed that two compounds from this class are active with the IC50 value of 100 µM and 400 nM.


Assuntos
Desenho de Fármacos , Antagonistas do Ácido Fólico/síntese química , Guaniltioureia/síntese química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Guaniltioureia/farmacologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tetra-Hidrofolato Desidrogenase/metabolismo
13.
J Org Chem ; 77(22): 10158-67, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23067292

RESUMO

Hydrogen-bond-driven electrophilic activation for selectivity control during competitive formation of 1,2-disubstituted and 2-substituted benzimidazoles from o-phenylenediamine and aldehydes is reported. The fluorous alcohols trifluoroethanol and hexafluoro-2-propanol efficiently promote the cyclocondensation of o-phenylenediamine with aldehydes to afford selectively the 1,2-disubstituted benzimidazoles at rt in short times. A mechanistic insight is invoked by NMR, mass spectrometry, and chemical studies to rationalize the selectivity. The ability of the fluorous alcohols in promoting the reaction and controlling the selectivity can be envisaged from their better hydrogen bond donor (HBD) abilities compared to that of the other organic solvents as well as of water. Due to the better HBD values, the fluorous alcohols efficiently promote the initial bisimine formation by electrophilic activation of the aldehyde carbonyl. Subsequently the hydrogen-bond-mediated activation of the in situ-formed bisimine triggers the rearrangement via 1,3-hydride shift to form the 1,2-disubstituted benzimidazoles.


Assuntos
Álcoois/química , Aldeídos/química , Benzimidazóis/química , Hidrocarbonetos Fluorados/química , Catálise , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Solventes/química
14.
Org Biomol Chem ; 10(2): 281-6, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22057389

RESUMO

1-Methylimidazole exhibits an unusually high efficiency in promoting the reaction of aryl methyl ketones with DMF-DMA to form (2E)-1-aryl-3-dimethylamino-2-propenones which lacks correlation between the catalytic efficiency and the basicity of 1-methylimidazole in comparison to other amines. An unprecedented supramolecular domino catalysis rationalises the lack of correlation between the catalytic efficiency and basicity of the amines. The supramolecular assemblies have been characterized by mass-spectrometric ion fishing. The time-dependent increase/decrease in the concentration (ion current) of the supramolecular species consolidated the mechanism.


Assuntos
Aminas/química , Dimetilformamida/análogos & derivados , Cetonas/química , Propano/síntese química , Catálise , Dimetilformamida/química , Substâncias Macromoleculares/química , Estrutura Molecular , Propano/análogos & derivados , Propano/química
15.
Chem Asian J ; 17(15): e202200304, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608137

RESUMO

The catalytic potential of various metal Lewis acid catalysts have been assessed to derive a high-yielding, multi-component domino synthesis of functionalized pyridines from (E)-3-(dimethylamino)-1-aryl/heteroaryl-prop-2-en-1-ones, 1,3-dicarbonyl compounds, and an ammonium salt (as the nitrogen precursor). Amongst the various metal halides, tetrafluoroborates, perchlorates, and triflates used as the catalyst, GaI3 proved to be the most effective. The mechanistic course of the most plausible pathway has been outlined as the intermediate formation of imine/enamine by the reaction of the 1,3-dicarbonyl compound with ammonia (liberated in situ from the ammonium salt used as the nitrogen source), which participates in the domino nucleophilic Michael reaction to the (2E)-3-(dimethylamino)-1-aryl/hetroarylprop-2-en-1-one by its active methylene carbon through its enamine form followed by intramolecular cyclization and aromatization. The effect of different ammonium salts as the nitrogen source has been investigated and NH4 OAc was found to be best. The influence of the acetate counter anion of NH4 OAc on the progress of the reaction was studied and its specific role in the cyclization and subsequent aromatization has been revealed. This work offers distinct advantages compared to the literature reported methodologies on the count of several green index parameters.


Assuntos
Compostos de Amônio , Gálio , Ânions , Catálise , Nitrogênio , Piridinas
16.
Future Med Chem ; 14(24): 1847-1864, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36444737

RESUMO

Aims: The screening of antimycobacterial benzo[d]thiazole-2-carboxamides against ATP-phosphoribosyl transferase (ATP-PRTase) was conducted. Materials & methods: The antitubercular potential of compounds 1 and 2 against ATP-PRTase was assessed through the determination of half maximal effective concentration (EC50) and binding constant (Kd), as well as competitive inhibitory studies and studies of perturbation of secondary structure, molecular modeling and L-histidine complementation assay. Results & conclusion: Compounds 1n and 2a significantly inhibited ATP-PRTase as evidenced by their EC50 and Kd values and the perturbation of the secondary structure study. Compound 1n exhibited stronger competitive inhibition toward ATP compared with 2a. The inhibition of the growth of Mycobacterium tuberculosis by targeting the L-histidine biosynthesis pathway and molecular modeling studies further supported the inhibition of ATP-PRTase.


Assuntos
ATP Fosforribosiltransferase , Mycobacterium tuberculosis , Tiazóis/farmacologia , ATP Fosforribosiltransferase/metabolismo , Histidina/metabolismo , Histidina/farmacologia , Antituberculosos/química , Trifosfato de Adenosina
17.
Future Med Chem ; 14(19): 1361-1373, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36103222

RESUMO

Aims: The present study aimed to assess the mode of action of previously reported anti-Mycobacterium tuberculosis benzo[d]imidazole-2-carboxamides against FtsZ along with their antibacterial potential. Materials & methods: The anti-mycobacterial action of benzo[d]imidazole-2-carboxamides against FtsZ was evaluated using inhibition of Bacillus subtilis 168, light scattering assay, circular dichroism spectroscopy, in silico molecular docking and molecular dynamics simulations. Results & conclusion: Three compounds (1k, 1o and 1e) were active against isoniazid-resistant strains. Four compounds (1h, 1i, 1o and 4h) showed >70% inhibition against B. subtilis 168. Compound 1o was the most potent inhibitor (91 ± 5% inhibition) of B. subtilis 168 FtsZ and perturbed its secondary structure. Molecular docking and molecular dynamics simulation of complexed 1o suggested M. tuberculosis FtsZ as a possible target for antitubercular activity.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias , Humanos , Imidazóis/farmacologia , Isoniazida , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
18.
J Org Chem ; 76(21): 8768-80, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21899254

RESUMO

The scope and limitations of metal tetrafluoroborates have been studied for epoxide ring-opening reaction with amines, and Zn(BF(4))(2)·xH(2)O has been found to be a mild and efficient catalyst affording high yields under solvent-free conditions at rt with excellent chemo-, regio-, and stereoselectivities. The catalytic efficiency followed the order Zn(BF(4))(2)·xH(2)O ≫ Cu(BF(4))(2)·xH(2)O > Co(BF(4))(2)·6H(2)O ≫ Fe(BF(4))(2)·6H(2)O > LiBF(4) for reactions with cyclohexene oxide and Zn(BF(4))(2)·xH(2)O ≫ Co(BF(4))(2)·6H(2)O ≫ Fe(BF(4))(2)·6H(2)O > Cu(BF(4))(2)·xH(2)O for stilbene oxide, but AgBF(4) was ineffective. For reaction of styrene oxide with aniline, the metal tetrafluoroborates exhibited comparable regioselectivity (1:99-7:93) with preferential reaction at the benzylic carbon of the epoxide ring. A reversal of regioselectivity (91:1-69:31) in favor of the reaction at the terminal carbon of the epoxide ring was observed for reaction with morpholine. The regioselectivity was dependent on the electronic and steric factors of the epoxide and the pK(a) of the amine and independent of amine nucleophilicity. The role of the metal tetrafluoroborates is envisaged as "electrophile nucleophile dual activation" through cooperativity of coordination, charge-charge interaction, and hydrogen-bond formation that rationalizes the catalytic efficiency, substrate reactivity, and regioselectivity. The methodology was used for synthesis of cardiovascular drug metoprolol as racemic and enriched enantiomeric forms.


Assuntos
Aminas/química , Anti-Hipertensivos/química , Anti-Hipertensivos/síntese química , Boratos/química , Compostos de Epóxi/química , Metoprolol/química , Metoprolol/síntese química , Zinco/química , Catálise , Cicloexenos/química , Íons/química , Estrutura Molecular , Estereoisomerismo
19.
J Org Chem ; 76(17): 7132-40, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21774556

RESUMO

1-Alkyl-3-methylimidazolium cation based ionic liquids efficiently catalyze N-tert-butyloxycarbonylation of amines with excellent chemoselectivity. The catalytic role of the ionic liquid is envisaged as "electrophilic activation" of di-tert-butyl dicarbonate (Boc(2)O) through bifurcated hydrogen bond formation with the C-2 hydrogen of the 1-alkyl-3-methylimidazolium cation and has been supported by a downfield shift of the imidazolium C-2 hydrogen of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][NTf(2)]) from δ 8.39 to 8.66 in the presence of Boc(2)O in the (1)H NMR and a drastic reduction of the catalytic efficiency with 1-butyl-2,3-dimethylimidazolium ionic liquids that are devoid of the C-2 hydrogen. The differential time required for reaction with aromatic and aliphatic amines has offered means for selective N-t-Boc formation during inter and intramolecular competitions. Preferential N-t-Boc formation with secondary aliphatic amine has been achieved in the presence of primary aliphatic amine. Comparison of the catalytic efficiency for N-t-Boc formation with a common substrate revealed that [bmim][NTf(2)] is superior to the reported Lewis acid catalysts.


Assuntos
Aminas/química , Hidrogênio/química , Imidazóis/química , Líquidos Iônicos/química , Catálise , Cátions/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Temperatura
20.
Chem Asian J ; 16(1): 87-96, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230945

RESUMO

Functionalization of the bio-relevant heterocycles 2-arylbenzo[d]oxazole and 2-arylbenzo[d]thiazole has been achieved through Ru(II)-catalyzed alkenylation with unactivated olefins leading to selective formation of the mono-alkenylated products. This approach has a broad substrate scope with respect to the coupling partners, affords high yields, and works for gram scale synthesis using a readily available Ru-based catalyst. Mechanistic studies reveal a C-H activation pathway for the dehydrogenative coupling leading to the alkenylation. However, the results of the ESI-MS-guided deuterium kinetic isotope effect studies indicate that the C-H activation stage may not be the rate-determining step of the reaction. The use of a radical scavenging agent such as TEMPO did not show any detrimental effect on the reaction outcome, eliminating the possibility of the involvement of a free-radical pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA