Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 29(11): 4738-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26229056

RESUMO

Adult skeletal muscles can regenerate after injury, due to the presence of satellite cells, a quiescent population of myogenic progenitor cells. Once activated, satellite cells repair the muscle damage by undergoing myogenic differentiation. The myogenic regulatory factors (MRFs) coordinate the process of progenitor differentiation in cooperation with other families of transcription factors (TFs). The Six1 and Six4 homeodomain TFs are expressed in developing and adult muscle and Six1 is critical for embryonic and adult myogenesis. However, the lack of a muscle developmental phenotype in Six4-null mice, which has been attributed to compensation by other Six family members, has discouraged further assessment of the role of Six4 during adult muscle regeneration. By employing genome-wide approaches to address the function of Six4 during adult skeletal myogenesis, we have identified a core set of muscle genes coordinately regulated in adult muscle precursors by Six4 and the MRF MyoD. Throughout the genome of differentiating adult myoblasts, the cooperation between Six4 and MyoD is associated with chromatin repressive mark removal by Utx, a demethylase of histone H3 trimethylated at lysine 27. Among the genes coordinately regulated by Six4 and MyoD are several genes critical for proper in vivo muscle regeneration, implicating a role of Six4 in this process. Using in vivo RNA interference of Six4, we expose an uncompensated function of this TF during muscle regeneration. Together, our results reveal a role for Six4 during adult muscle regeneration and suggest a widespread mechanism of cooperation between Six4 and MyoD.


Assuntos
Histona Desmetilases/metabolismo , Proteínas de Homeodomínio/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Regeneração/fisiologia , Transativadores/metabolismo , Animais , Feminino , Estudo de Associação Genômica Ampla , Histona Desmetilases/genética , Proteínas de Homeodomínio/genética , Camundongos , Proteína MyoD/genética , Transativadores/genética
2.
Aging Cell ; : e14165, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757355

RESUMO

Impaired mitochondrial function is a hallmark of aging and a major contributor to neurodegenerative diseases. We have shown that disrupted mitochondrial dynamics typically found in aging alters the fate of neural stem cells (NSCs) leading to impairments in learning and memory. At present, little is known regarding the mechanisms by which neural stem and progenitor cells survive and adapt to mitochondrial dysfunction. Using Opa1-inducible knockout as a model of aging and neurodegeneration, we identify a decline in neurogenesis due to impaired stem cell activation and progenitor proliferation, which can be rescued by the mitigation of oxidative stress through hypoxia. Through sc-RNA-seq, we identify the ATF4 pathway as a critical mechanism underlying cellular adaptation to metabolic stress. ATF4 knockdown in Opa1-deficient NSCs accelerates cell death, while the increased expression of ATF4 enhances proliferation and survival. Using a Slc7a11 mutant, an ATF4 target, we show that ATF4-mediated glutathione production plays a critical role in maintaining NSC survival and function under stress conditions. Together, we show that the activation of the integrated stress response (ISR) pathway enables NSCs to adapt to metabolic stress due to mitochondrial dysfunction and metabolic stress and may serve as a therapeutic target to enhance NSC survival and function in aging and neurodegeneration.

3.
Nucleic Acids Res ; 38(20): 6857-71, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20601407

RESUMO

Precise regulation of gene expression is crucial to myogenesis and is thought to require the cooperation of various transcription factors. On the basis of a bioinformatic analysis of gene regulatory sequences, we hypothesized that myogenic regulatory factors (MRFs), key regulators of skeletal myogenesis, cooperate with members of the SIX family of transcription factors, known to play important roles during embryonic skeletal myogenesis. To this day little is known regarding the exact molecular mechanism by which SIX factors regulate muscle development. We have conducted a functional genomic study of the role played by SIX1 and SIX4 during the differentiation of skeletal myoblasts, a model of adult muscle regeneration. We report that SIX factors cooperate with the members of the MRF family to activate gene expression during myogenic differentiation, and that their function is essential to this process. Our findings also support a model where SIX factors function not only 'upstream' of the MRFs during embryogenesis, but also 'in parallel' to them during myoblast differentiation. We have identified new essential nodes that depend on SIX factor function, in the myogenesis regulatory network, and have uncovered a novel way by which MRF function is modulated during differentiation.


Assuntos
Proteínas de Homeodomínio/metabolismo , Desenvolvimento Muscular/genética , Mioblastos Esqueléticos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Transativadores/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Genoma , Proteínas de Homeodomínio/fisiologia , Humanos , Camundongos , Mioblastos Esqueléticos/citologia , Transativadores/fisiologia , Ativação Transcricional
4.
Cell Rep ; 41(5): 111578, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323247

RESUMO

Long-term maintenance of the adult neurogenic niche depends on proper regulation of entry and exit from quiescence. Neural stem cell (NSC) transition from quiescence to activation is a complex process requiring precise cell-cycle control coordinated with transcriptional and morphological changes. How NSC fate transitions in coordination with the cell-cycle machinery remains poorly understood. Here we show that the Rb/E2F axis functions by linking the cell-cycle machinery to pivotal regulators of NSC fate. Deletion of Rb family proteins results in activation of NSCs, inducing a transcriptomic transition toward activation. Deletion of their target activator E2Fs1/3 results in intractable quiescence and cessation of neurogenesis. We show that the Rb/E2F axis mediates these fate transitions through regulation of factors essential for NSC function, including REST and ASCL1. Thus, the Rb/E2F axis is an important regulator of NSC fate, coordinating cell-cycle control with NSC activation and quiescence fate transitions.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/metabolismo , Neurogênese/fisiologia , Divisão Celular , Ciclo Celular , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
5.
Skelet Muscle ; 11(1): 26, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34809717

RESUMO

BACKGROUND: The Six1 transcription factor is implicated in controlling the development of several tissue types, notably skeletal muscle. Six1 also contributes to muscle metabolism and its activity is associated with the fast-twitch, glycolytic phenotype. Six1 regulates the expression of certain genes of the fast muscle program by directly stimulating their transcription or indirectly acting through a long non-coding RNA. We hypothesized that additional mechanisms of action of Six1 might be at play. METHODS: A combined analysis of gene expression profiling and genome-wide location analysis data was performed. Results were validated using in vivo RNA interference loss-of-function assays followed by measurement of gene expression by RT-PCR and transcriptional reporter assays. RESULTS: The Slc16a10 gene, encoding the thyroid hormone transmembrane transporter MCT10, was identified as a gene with a transcriptional enhancer directly bound by Six1 and requiring Six1 activity for full expression in adult mouse tibialis anterior, a predominantly fast-twitch muscle. Of the various thyroid hormone transporters, MCT10 mRNA was found to be the most abundant in skeletal muscle, and to have a stronger expression in fast-twitch compared to slow-twitch muscle groups. Loss-of-function of MCT10 in the tibialis anterior recapitulated the effect of Six1 on the expression of fast-twitch muscle genes and led to lower activity of a thyroid hormone receptor-dependent reporter gene. CONCLUSIONS: These results shed light on the molecular mechanisms controlling the tissue expression profile of MCT10 and identify modulation of the thyroid hormone signaling pathway as an additional mechanism by which Six1 influences skeletal muscle metabolism.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Proteínas de Homeodomínio , Animais , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Camundongos , Músculo Esquelético/metabolismo , Hormônios Tireóideos , Fatores de Transcrição/genética
6.
PLoS One ; 8(6): e67762, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840772

RESUMO

Quiescent satellite cells are myogenic progenitors that enable regeneration of skeletal muscle. One of the early events of satellite cell activation following myotrauma is the induction of the myogenic regulatory factor MyoD, which eventually induces terminal differentiation and muscle function gene expression. The purpose of this study was to elucidate the mechanism by which MyoD is induced during activation of satellite cells in mouse muscle undergoing regeneration. We show that Six1, a transcription factor essential for embryonic myogenesis, also regulates MyoD expression in muscle progenitor cells. Six1 knock-down by RNA interference leads to decreased expression of MyoD in myoblasts. Chromatin immunoprecipitation assays reveal that Six1 binds the Core Enhancer Region of MyoD. Further, transcriptional reporter assays demonstrate that Core Enhancer Region reporter gene activity in myoblasts and in regenerating muscle depends on the expression of Six1 and on Six1 binding sites. Finally, we provide evidence indicating that Six1 is required for the proper chromatin structure at the Core Enhancer Region, as well as for MyoD binding at its own enhancer. Together, our results reveal that MyoD expression in satellite cells depends on Six1, supporting the idea that Six1 plays an important role in adult myogenesis, in addition to its role in embryonic muscle formation.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/fisiologia , Proteína MyoD/genética , Células Satélites de Músculo Esquelético/fisiologia , Células-Tronco/fisiologia , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Cromatina/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Reporter/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Mioblastos/fisiologia , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Regeneração/genética , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Mol Carcinog ; 40(1): 12-23, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15108326

RESUMO

Squamous cell carcinoma (SCC) is the most prevalent form of epithelial cancer. SCC results when normal epithelial cells undergo multiple neoplastic changes that culminate in the evolution of an invasive cancer. Retinoids are commonly used as chemopreventive and treatment agents in skin cancer; however, SCC progression is accompanied by a gradual loss of retinoid responsiveness. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (HPR) has shown promising anti-neoplastic activity in a variety of tumor cells, including those that are resistant to all-trans retinoic acid (t-RA). We investigated the effect of HPR on growth and apoptosis of squamous cells at different stages of carcinogenesis. We then determined if retinoic acid receptor (RAR) overexpression affected the outcome of HPR treatment. To model SCC malignant progression, we used a panel of murine keratinocytes representing different stages of squamous cell carcinogenesis. This panel consisted of primary keratinocytes, SP1 and 308 papilloma cell lines, the PAM-212 squamous carcinoma cell line, and the spindle I7 cell line. With the exception of the primary keratinocytes, all cells were unresponsive to t-RA treatment. Pharmacological concentrations of HPR were non-cytotoxic to all keratinocytes tested and HPR sensitivity was stage-dependent, with the papilloma cell lines being the most sensitive, and the spindle cells being the most resistant. Overexpression of RARgamma in SP1 papilloma cells enhanced growth suppression and apoptosis induction by HPR. HPR-induced growth suppression was accompanied by a simultaneous block in the G(1) phase of the cell cycle in RAR-transduced and control SP1 cells and differential regulation of cell cycle and apoptotic mediators.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica , Fenretinida/farmacologia , Queratinócitos/efeitos dos fármacos , Papiloma/patologia , Animais , Benzimidazóis/metabolismo , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Fase G1/efeitos dos fármacos , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estadiamento de Neoplasias , Nevo Fusocelular/patologia , Propídio , Receptores do Ácido Retinoico/metabolismo , Ribonucleases/metabolismo , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA