Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Chem Soc ; 143(40): 16401-16410, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606279

RESUMO

Biomimetics is a design principle within chemistry, biology, and engineering, but chemistry biomimetic approaches have been generally limited to emulating nature's chemical toolkit while emulation of nature's physical toolkit has remained largely unexplored. To begin to explore this, we designed biophysically mimetic microfluidic reactors with characteristic length scales and shear stresses observed within capillaries. We modeled the effect of shear with molecular dynamics studies and showed that this induces specific normally buried residues to become solvent accessible. We then showed using kinetics experiments that rates of reaction of these specific residues in fact increase in a shear-dependent fashion. We applied our results in the creation of a new microfluidic approach for the multidimensional study of cysteine biomarkers. Finally, we used our approach to establish dissociation of the therapeutic antibody trastuzumab in a reducing environment. Our results have implications for the efficacy of existing therapeutic antibodies in blood plasma as well as suggesting in general that biophysically mimetic chemistry is exploited in biology and should be explored as a research area.


Assuntos
Biomimética
2.
Proc Natl Acad Sci U S A ; 114(6): E1009-E1017, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28096355

RESUMO

The self-assembly of α-synuclein is closely associated with Parkinson's disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson's disease and related conditions.


Assuntos
Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , alfa-Sinucleína/química , Algoritmos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Colestanóis/química , Colestanóis/farmacologia , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Estrutura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Paresia/genética , Paresia/metabolismo , Paresia/prevenção & controle , Doença de Parkinson/metabolismo , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Analyst ; 144(14): 4413-4424, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31215547

RESUMO

In recent years, significant advancements have been made in the understanding of the population distributions and dynamic oligomeric states of the molecular chaperone αB-crystallin and its core domain variants. In this work, we provide solution-phase evidence of the polydispersity of αB-crystallin using microfluidic methods, used for separating the oligomeric species present in solution according to their different electrophoretic mobilities on-chip in a matter of seconds. We in particular demonstrate that microfluidic high-field electrophoresis and diffusion can detect the oligomerisation of these highly dynamic molecular chaperones and characterise the dominant oligomeric species present. We thereby provide a robust microfluidic method for characterising the individual species within complex protein mixtures of biological relevance.

4.
Phys Chem Chem Phys ; 19(34): 23060-23067, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28817152

RESUMO

The isoelectric point (pI) of a protein is a key characteristic that influences its overall electrostatic behaviour. The majority of conventional methods for the determination of the isoelectric point of a molecule rely on the use of spatial gradients in pH, although significant practical challenges are associated with such techniques, notably the difficulty in generating a stable and well controlled pH gradient. Here, we introduce a gradient-free approach, exploiting a microfluidic platform which allows us to perform rapid pH change on chip and probe the electrophoretic mobility of species in a controlled field. In particular, in this approach, the pH of the electrolyte solution is modulated in time rather than in space, as in the case for conventional determinations of the isoelectric point. To demonstrate the general approachability of this platform, we have measured the isoelectric points of representative set of seven proteins, bovine serum albumin, ß-lactoglobulin, ribonuclease A, ovalbumin, human transferrin, ubiquitin and myoglobin in microlitre sample volumes. The ability to conduct measurements in free solution thus provides the basis for the rapid determination of isoelectric points of proteins under a wide variety of solution conditions and in small volumes.


Assuntos
Microfluídica/métodos , Proteínas/química , Animais , Bovinos , Eletroforese , Humanos , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Dispositivos Lab-On-A-Chip , Lactoglobulinas/química , Mioglobina/química , Soroalbumina Bovina/química , Transferrina/química
5.
Cureus ; 14(6): e25591, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35795500

RESUMO

Coronavirus disease 2019 (COVID-19) continues to be fatal despite advances in the understanding of characteristics of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), global prevention strategies, new anti-viral treatments, and worldwide vaccination programs. The exact underlying mechanism through which SARS-CoV-2 leads to acute respiratory distress syndrome (ARDS) resulting in intensive care unit admission, mechanical ventilation, and eventually death remains elusive. Cytokine storm is one of the most favorable mechanisms that scientists show remarkable interest to target in randomized clinical trials with promising outcomes. Macrophage activation syndrome (MAS), the most serious form of cytokine storm, requires early recognition and treatment regardless of etiology. Here, we report a 59-year-old gentleman with a COVID-19 infection complicated by MAS. Our aim is to increase awareness of this condition among health care providers as it necessitates prompt diagnosis and treatment due to an extremely poor prognosis.

6.
Front Cell Dev Biol ; 9: 552549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829010

RESUMO

The aggregation of α-synuclein is a hallmark of Parkinson's disease (PD) and a variety of related neurological disorders. A number of mutations in this protein, including A30P and A53T, are associated with familial forms of the disease. Patients carrying the A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD, while those carrying the A53T mutation generally have an earlier age of onset and an accelerated progression. We report two C. elegans models of PD (PDA30P and PDA53T), which express these mutational variants in the muscle cells, and probed their behavior relative to animals expressing the wild-type protein (PDWT). PDA30P worms showed a reduced speed of movement and an increased paralysis rate, control worms, but no change in the frequency of body bends. By contrast, in PDA53T worms both speed and frequency of body bends were significantly decreased, and paralysis rate was increased. α-Synuclein was also observed to be less well localized into aggregates in PDA30P worms compared to PDA53T and PDWT worms, and amyloid-like features were evident later in the life of the animals, despite comparable levels of expression of α-synuclein. Furthermore, squalamine, a natural product currently in clinical trials for treating symptomatic aspects of PD, was found to reduce significantly the aggregation of α-synuclein and its associated toxicity in PDA53T and PDWT worms, but had less marked effects in PDA30P. In addition, using an antibody that targets the N-terminal region of α-synuclein, we observed a suppression of toxicity in PDA30P, PDA53T and PDWT worms. These results illustrate the use of these two C. elegans models in fundamental and applied PD research.

7.
Microsyst Nanoeng ; 5: 33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636924

RESUMO

Microfluidic platforms provide an excellent basis for working with heterogeneous samples and separating biomolecular components at high throughput, with high recovery rates and by using only very small sample volumes. To date, several micron scale platforms with preparative capabilities have been demonstrated. Here we describe and demonstrate a microfluidic device that brings preparative and analytical operations together onto a single chip and thereby allows the acquisition of multidimensional information. We achieve this objective by using a free-flow electrophoretic separation approach that directs fractions of sample into an on-chip analysis unit, where the fractions are characterised through a microfluidic diffusional sizing process. This combined approach therefore allows simultaneously quantifying the sizes and the charges of components in heterogenous mixtures. We illustrate the power of the platform by describing the size distribution of a mixture comprising components which are close in size and cannot be identified as individual components using state-of-the-art solution sizing techniques on their own. Furthermore, we show that the platform can be used for two-dimensional fingerprinting of heterogeneous protein mixtures within tens of seconds, opening up a possibility to obtain multiparameter data on biomolecular systems on a minute timescale.

8.
Microsyst Nanoeng ; 5: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636930

RESUMO

Nanofluidic devices have great potential for applications in areas ranging from renewable energy to human health. A crucial requirement for the successful operation of nanofluidic devices is the ability to interface them in a scalable manner with the outside world. Here, we demonstrate a hybrid two photon nanolithography approach interfaced with conventional mask whole-wafer UV-photolithography to generate master wafers for the fabrication of integrated micro and nanofluidic devices. Using this approach we demonstrate the fabrication of molds from SU-8 photoresist with nanofluidic features down to 230 nm lateral width and channel heights from micron to sub-100 nm. Scanning electron microscopy and atomic force microscopy were used to characterize the printing capabilities of the system and show the integration of nanofluidic channels into an existing microfluidic chip design. The functionality of the devices was demonstrated through super-resolution microscopy, allowing the observation of features below the diffraction limit of light produced using our approach. Single molecule localization of diffusing dye molecules verified the successful imprint of nanochannels and the spatial confinement of molecules to 200 nm across the nanochannel molded from the master wafer. This approach integrates readily with current microfluidic fabrication methods and allows the combination of microfluidic devices with locally two-photon-written nano-sized functionalities, enabling rapid nanofluidic device fabrication and enhancement of existing microfluidic device architectures with nanofluidic features.

9.
Nat Commun ; 10(1): 225, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644384

RESUMO

Transient oligomeric species formed during the aggregation process of the 42-residue form of the amyloid-ß peptide (Aß42) are key pathogenic agents in Alzheimer's disease (AD). To investigate the relationship between Aß42 aggregation and its cytotoxicity and the influence of a potential drug on both phenomena, we have studied the effects of trodusquemine. This aminosterol enhances the rate of aggregation by promoting monomer-dependent secondary nucleation, but significantly reduces the toxicity of the resulting oligomers to neuroblastoma cells by inhibiting their binding to the cellular membranes. When administered to a C. elegans model of AD, we again observe an increase in aggregate formation alongside the suppression of Aß42-induced toxicity. In addition to oligomer displacement, the reduced toxicity could also point towards an increased rate of conversion of oligomers to less toxic fibrils. The ability of a small molecule to reduce the toxicity of oligomeric species represents a potential therapeutic strategy against AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Colestanos/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Espermina/análogos & derivados , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Caenorhabditis elegans , Linhagem Celular Tumoral , Colestanos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fragmentos de Peptídeos/efeitos dos fármacos , Espermina/farmacologia , Espermina/uso terapêutico
10.
Lab Chip ; 19(1): 50-58, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30515508

RESUMO

Circular dichroism spectroscopy has become a powerful tool to characterise proteins and other biomolecules. For heterogeneous samples such as those present for interacting proteins, typically only average spectroscopic features can be resolved. Here we overcome this limitation by using free-flow microfluidic size separation in-line with synchrotron radiation circular dichroism to resolve the secondary structure of each component of a model protein mixture containing monomers and fibrils. To enable this objective, we have integrated far-UV compatible measurement chambers into PDMS-based microfluidic devices. Two architectures are proposed so as to accommodate for a wide range of concentrations. The approach, which can be used in combination with other bulk measurement techniques, paves the way to the study of complex mixtures such as the ones associated with protein misfolding and aggregation diseases including Alzheimer's and Parkinson's diseases.


Assuntos
Dicroísmo Circular/instrumentação , Dicroísmo Circular/métodos , Dispositivos Lab-On-A-Chip , Proteínas/isolamento & purificação , Animais , Bovinos , Difusão , Desenho de Equipamento , Insulina/química , Tamanho da Partícula , Estrutura Secundária de Proteína , Proteínas/análise , Proteínas/química , Reprodutibilidade dos Testes , Síncrotrons
11.
J Neurosci Methods ; 306: 57-67, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452179

RESUMO

BACKGROUND: The nematode worm C. elegans is a model organism widely used for studies of genetics and of human disease. The health and fitness of the worms can be quantified in different ways, such as by measuring their bending frequency, speed or lifespan. Manual assays, however, are time consuming and limited in their scope providing a strong motivation for automation. NEW METHOD: We describe the development and application of an advanced machine vision system for characterising the behaviour of C. elegans, the Wide Field-of-View Nematode Tracking Platform (WF-NTP), which enables massively parallel data acquisition and automated multi-parameter behavioural profiling of thousands of worms simultaneously. RESULTS: We screened more than a million worms from several established models of neurodegenerative disorders and characterised the effects of potential therapeutic molecules for Alzheimer's and Parkinson's diseases. By using very large numbers of animals we show that the sensitivity and reproducibility of behavioural assays is very greatly increased. The results reveal the ability of this platform to detect even subtle phenotypes. COMPARISON WITH EXISTING METHODS: The WF-NTP method has substantially greater capacity compared to current automated platforms that typically either focus on characterising single worms at high resolution or tracking the properties of populations of less than 50 animals. CONCLUSIONS: The WF-NTP extends significantly the power of existing automated platforms by combining enhanced optical imaging techniques with an advanced software platform. We anticipate that this approach will further extend the scope and utility of C. elegans as a model organism.


Assuntos
Caenorhabditis elegans/fisiologia , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Animais , Comportamento Animal , Interpretação Estatística de Dados , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Aprendizado de Máquina , Doenças Neurodegenerativas/fisiopatologia , Reconhecimento Automatizado de Padrão/métodos , Fenótipo , Reprodutibilidade dos Testes , Software
12.
ACS Chem Biol ; 13(8): 2308-2319, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29953201

RESUMO

The aggregation of α-synuclein, an intrinsically disordered protein that is highly abundant in neurons, is closely associated with the onset and progression of Parkinson's disease. We have shown previously that the aminosterol squalamine can inhibit the lipid induced initiation process in the aggregation of α-synuclein, and we report here that the related compound trodusquemine is capable of inhibiting not only this process but also the fibril-dependent secondary pathways in the aggregation reaction. We further demonstrate that trodusquemine can effectively suppress the toxicity of α-synuclein oligomers in neuronal cells, and that its administration, even after the initial growth phase, leads to a dramatic reduction in the number of α-synuclein inclusions in a Caenorhabditis elegans model of Parkinson's disease, eliminates the related muscle paralysis, and increases lifespan. On the basis of these findings, we show that trodusquemine is able to inhibit multiple events in the aggregation process of α-synuclein and hence to provide important information about the link between such events and neurodegeneration, as it is initiated and progresses. Particularly in the light of the previously reported ability of trodusquemine to cross the blood-brain barrier and to promote tissue regeneration, the present results suggest that this compound has the potential to be an important therapeutic candidate for Parkinson's disease and related disorders.


Assuntos
Colestanos/farmacologia , Doença de Parkinson/tratamento farmacológico , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Espermina/análogos & derivados , alfa-Sinucleína/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Linhagem Celular , Colestanos/uso terapêutico , Modelos Animais de Doenças , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo , Espermina/farmacologia , Espermina/uso terapêutico
13.
Biomicrofluidics ; 11(1): 014113, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28289484

RESUMO

Current lithography approaches underpinning the fabrication of microfluidic devices rely on UV exposure of photoresists to define microstructures in these materials. Conventionally, this objective is achieved with gas discharge mercury lamps, which are capable of producing high intensity UV radiation. However, these sources are costly, have a comparatively short lifetime, necessitate regular calibration, and require significant time to warm up prior to exposure taking place. To address these limitations we exploit advances in solid state sources in the UV range and describe a fast and robust wafer-scale laboratory exposure system relying entirely on UV-Light emitting diode (UV-LED) illumination. As an illustration of the potential of this system for fast and low-cost microfluidic device production, we demonstrate the microfabrication of a 3D spray-drying microfluidic device and a 3D double junction microdroplet maker device.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 1): 011708, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23005438

RESUMO

We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (Q(αß)B(α)B(ß)) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field.


Assuntos
Cristais Líquidos/química , Cristais Líquidos/efeitos da radiação , Campos Magnéticos , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Luz , Refratometria , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA