Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Food Microbiol ; 31(2): 191-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22608223

RESUMO

Prevalence of enterococci and antibiotic resistance profiles of Enterococcus faecalis was analyzed in 126 French cheeses from retail stores. Forty-four percent of pasteurized or thermised-milk cheeses, and up to 92% of raw-milk cheeses contained detectable enterococci. A total of 337 antibiotic resistant enterococci were isolated in 29% and 60% of pasteurized-milk and raw-milk cheeses, respectively. E. faecalis was the predominant antibiotic resistant species recovered (81%), followed by Enterococcus faecium (13%), and Enterococcus durans (6%). The most prevalent antibiotic resistances were tetracycline (Tet) and minocycline (Min), followed by erythromycin (Ery), kanamycin (Kan) and chloramphenicol (Cm). The most common multiple antibiotic resistance phenotype was Cm Ery Kan Min Tet. The occurrence of antibiotic genes, as searched by PCR, was 100 % for aph3'IIIa, 96 % for ermB, 90 % for tetM and 80 % for catA in isolates resistant to Kan, Ery, Tet or Cm, respectively. MLST analysis of 30 multidrug resistant E. faecalis revealed that ST19, CC21, CC25 and CC55 isolates were the most common in cheeses. In conclusion, as in many other European countries, French cheeses do contain enterococci with multiple antibiotics resistances. However, low occurrence of high-level gentamicin resistant or sulfamethoxazole/trimethoprim-resistant enterococci and absence of vancomycin- or ampicillin- resistant enterococci indicate that cheeses cannot be considered as a major reservoir for nosocomial multi-drug resistant enterococci.


Assuntos
Antibacterianos/farmacologia , Queijo/microbiologia , Farmacorresistência Bacteriana , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/isolamento & purificação , Contaminação de Alimentos/análise , Animais , Técnicas de Tipagem Bacteriana , Enterococcus faecalis/classificação , Enterococcus faecalis/genética , Contaminação de Alimentos/estatística & dados numéricos , França , Testes de Sensibilidade Microbiana
2.
Int J Food Microbiol ; 113(2): 154-63, 2007 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-17169455

RESUMO

The relationship between C. tyrobutyricum, C. sporogenes and C. beijerinckii in experimental cheese conditions, and their influences on late-blowing and butyric fermentation, have been investigated. A molecular approach using a PCR-TTGE method in combination with conventional methods, such as microbiological and physico-chemical analysis, was performed to monitor the evolution of these clostridial species, simultaneously with the occurrence of cheese defects. Sixteen Emmental type cheeses were produced from milk inoculated with different clostridial spore associations. In all cheeses inoculated with C. tyrobutyricum, obvious signs of late blowing were detected. In cheeses inoculated with C. beijerinckii or C. sporogenes, a formation of holes in cheese body was observed, with a concomitant slight amount of butyric acid production. Even though C. beijerinckii and C. sporogenes were less metabolically active and less numerically important than C. tyrobutyricum in cheese as shown by TTGE profiles, the association of these species to C. tyrobutyricum enhanced the butyric fermentation and the cheese defects. The level of butyric content in ripened cheese increased to 268 mg 100 g(-1) in presence of C. tyrobutyricum, and reached a maximum of 414 mg 100 g(-1) in presence of the C. beijerinckii-C. tyrobutyricum (1:10) association. The propionic fermentation was also higher in cheese inoculated with C. tyrobutyricum, and was slowed down in presence of C. beijerinckii and C. sporogenes. From 30 days of ripening, a strong correlation between the chemical contents and the intensity of cheese defects was demonstrated. A chemical analysis of cheese associated with a molecular method for microbial spoilage investigation allows the prediction of the level of late blowing at early stages of ripening, and the understanding of the origin of the defect.


Assuntos
Ácido Butírico/metabolismo , Queijo/microbiologia , Clostridium/metabolismo , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Clostridium/crescimento & desenvolvimento , Clostridium/fisiologia , Clostridium beijerinckii/crescimento & desenvolvimento , Clostridium beijerinckii/metabolismo , Clostridium beijerinckii/fisiologia , Clostridium tyrobutyricum/crescimento & desenvolvimento , Clostridium tyrobutyricum/metabolismo , Clostridium tyrobutyricum/fisiologia , DNA Bacteriano/análise , Fermentação , Amplificação de Genes , Reação em Cadeia da Polimerase , RNA Bacteriano/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Esporos Bacterianos/crescimento & desenvolvimento , Fatores de Tempo
3.
Microbiol Spectr ; 2(1): CM-0010-2012, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26082119

RESUMO

Comprehensive collaborative studies from our laboratories reveal the extensive biodiversity of the microflora of the surfaces of smear-ripened cheeses. Two thousand five hundred ninety-seven strains of bacteria and 2,446 strains of yeasts from the surface of the smear-ripened cheeses Limburger, Reblochon, Livarot, Tilsit, and Gubbeen, isolated at three or four times during ripening, were identified; 55 species of bacteria and 30 species of yeast were found. The microfloras of the five cheeses showed many similarities but also many differences and interbatch variation. Very few of the commercial smear microorganisms, deliberately inoculated onto the cheese surface, were reisolated and then mainly from the initial stages of ripening, implying that smear cheese production units must have an adventitious "house" flora. Limburger cheese had the simplest microflora, containing two yeasts, Debaryomyces hansenii and Geotrichum candidum, and two bacteria, Arthrobacter arilaitensis and Brevibacterium aurantiacum. The microflora of Livarot was the most complicated, comprising 10 yeasts and 38 bacteria, including many gram-negative organisms. Reblochon also had a very diverse microflora containing 8 yeasts and 13 bacteria (excluding gram-negative organisms which were not identified), while Gubbeen had 7 yeasts and 18 bacteria and Tilsit had 5 yeasts and 9 bacteria. D. hansenii was by far the dominant yeast, followed in order by G. candidum, Candida catenulata, and Kluyveromyces lactis. B. aurantiacum was the dominant bacterium and was found in every batch of the 5 cheeses. The next most common bacteria, in order, were Staphylococcus saprophyticus, A. arilaitensis, Corynebacterium casei, Corynebacterium variabile, and Microbacterium gubbeenense. S. saprophyticus was mainly found in Gubbeen, and A. arilaitensis was found in all cheeses but not in every batch. C. casei was found in most batches of Reblochon, Livarot, Tilsit, and Gubbeen. C. variabile was found in all batches of Gubbeen and Reblochon but in only one batch of Tilsit and in no batch of Limburger or Livarot. Other bacteria were isolated in low numbers from each of the cheeses, suggesting that each of the 5 cheeses has a unique microflora. In Gubbeen cheese, several different strains of the dominant bacteria were present, as determined by pulsed-field gel electrophoresis, and many of the less common bacteria were present as single clones. The culture-independent method, denaturing gradient gel electrophoresis, resulted in identification of several bacteria which were not found by the culture-dependent (isolation and rep-PCR identification) method. It was thus a useful complementary technique to identify other bacteria in the cheeses. The gross composition, the rate of increase in pH, and the indices of proteolysis were different in most of the cheeses.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Queijo/microbiologia , Consórcios Microbianos , Leveduras/classificação , Leveduras/isolamento & purificação
4.
Int J Syst Evol Microbiol ; 58(Pt 12): 2687-93, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19060041

RESUMO

Four Gram-positive, aerobic, non-sporulating, rod-shaped bacteria isolated from the surface microflora of Reblochon cheese at the late stage of ripening had chemotaxonomic properties characteristic of members of the family Microbacteriaceae. The isolates had virtually identical SDS-PAGE whole-organism protein patterns, shared many chemical and phenotypic characteristics and formed an independent branch in the Microbacteriaceae 16S rRNA gene tree that was most closely related to the type strains of Mycetocola species. The new isolates had chemotaxonomic properties consistent with their classification in the genus Mycetocola but were readily distinguished from recognized members of this taxon based on DNA-DNA relatedness, whole-organism protein and phenotypic data. The combined genotypic and phenotypic data indicate that the isolates should be classified in the genus Mycetocola as members of a novel species, for which the name Mycetocola reblochoni sp. nov. is proposed. The type strain is LMG 22367(T) (=R-20377(T) =BRB-1L41(T) =DSM 18580(T)).


Assuntos
Actinomycetales/classificação , Actinomycetales/fisiologia , Queijo/microbiologia , Actinomycetales/química , Actinomycetales/genética , Eletroforese em Gel de Poliacrilamida , Ácidos Graxos/análise , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Vitamina K 2/análise
5.
Appl Environ Microbiol ; 71(1): 29-38, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15640166

RESUMO

A nested-PCR temporal temperature gradient gel electrophoresis (TTGE) approach was developed for the detection of bacteria belonging to phylogenetic cluster I of the genus Clostridium (the largest clostridial group, which represents 25% of the currently cultured clostridial species) in cheese suspected of late blowing. Primers were designed based on the 16S rRNA gene sequence, and the specificity was confirmed in PCRs performed with DNAs from cluster I and non-cluster I species as the templates. TTGE profiles of the PCR products, comprising the V5-V6 region of the 16S rRNA gene, allowed us to distinguish the majority of cluster I species. PCR-TTGE was applied to analyze commercial cheeses with defects. All cheeses gave a signal after nested PCR, and on the basis of band comigration with TTGE profiles of reference strains, all the bands could be assigned to a clostridial species. The direct identification of Clostridium spp. was confirmed by sequencing of excised bands. C. tyrobutyricum and C. beijerinckii contaminated 15 and 14 of the 20 cheese samples tested, respectively, and C. butyricum and C. sporogenes were detected in one cheese sample. Most-probable-number counts and volatile fatty acid were determined for comparison purposes. Results obtained were in agreement, but only two species, C. tyrobutyricum and C. sporogenes, could be isolated by the plating method. In all cheeses with a high amount of butyric acid (>100 mg/100 g), the presence of C. tyrobutyricum DNA was confirmed by PCR-TTGE, suggesting the involvement of this species in butyric acid fermentation. These results demonstrated the efficacy of the PCR-TTGE method to identify Clostridium in cheeses. The sensitivity of the method was estimated to be 100 CFU/g.


Assuntos
Queijo/microbiologia , Clostridium/classificação , Primers do DNA , Eletroforese em Gel de Poliacrilamida/métodos , Variação Genética , Reação em Cadeia da Polimerase/métodos , Técnicas de Tipagem Bacteriana , Clostridium/genética , Clostridium/isolamento & purificação , DNA Bacteriano/análise , DNA Ribossômico/análise , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade
6.
J Dairy Res ; 71(3): 367-71, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15354584

RESUMO

In a study of the evolution of conjugated linoleic acid (CLA) during cheese production, the influence of Emmental cheese processing on the CLA content and the CLA isomer composition was evaluated. The use of raw and thermised milk, changes of processing temperature and the effect of propionic acid bacteria (PAB) were investigated. The content of CLA in raw milk was 8.6 +/- 1.9 mg/g fat and in the ripened cheese at 70 d was 8.6 +/- 1.6 mg/g fat, under normal processing conditions. No changes in the CLA content and CLA isomer composition were observed during Emmental cheese manufacturing process. Changes in cooking and moulding temperatures did not influence the CLA content. CLA content of cheese made from microfiltered milk with two different Propionibacterium freudenreichii strains was very close to cheeses made without PAB. CLA levels seem to be stable in this type of dairy product under the conditions examined.


Assuntos
Queijo/análise , Manipulação de Alimentos/métodos , Ácidos Linoleicos Conjugados/análise , Ácidos Linoleicos Conjugados/química , Animais , Queijo/microbiologia , Fermentação , Temperatura Alta , Isomerismo , Leite/química , Propionibacterium/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA