Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(29): e2300315120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428920

RESUMO

An emerging trend in small-molecule pharmaceuticals, generally composed of nitrogen heterocycles (N-heterocycles), is the incorporation of aliphatic fragments. Derivatization of the aliphatic fragments to improve drug properties or identify metabolites often requires lengthy de novo syntheses. Cytochrome P450 (CYP450) enzymes are capable of direct site- and chemo-selective oxidation of a broad range of substrates but are not preparative. A chemoinformatic analysis underscored limited structural diversity of N-heterocyclic substrates oxidized using chemical methods relative to pharmaceutical chemical space. Here, we describe a preparative chemical method for direct aliphatic oxidation that tolerates a wide range of nitrogen functionality (chemoselective) and matches the site of oxidation (site-selective) of liver CYP450 enzymes. Commercial small-molecule catalyst Mn(CF3-PDP) selectively effects direct methylene oxidation in compounds bearing 25 distinct heterocycles including 14 out of 27 of the most frequent N-heterocycles found in U.S. Food and Drug Administration (FDA)-approved drugs. Mn(CF3-PDP) oxidations of carbocyclic bioisostere drug candidates (for example, HCV NS5B and COX-2 inhibitors including valdecoxib and celecoxib derivatives) and precursors of antipsychotic drugs blonanserin, buspirone, and tiospirone and the fungicide penconazole are demonstrated to match the major site of aliphatic metabolism obtained with liver microsomes. Oxidations are demonstrated at low Mn(CF3-PDP) loadings (2.5 to 5 mol%) on gram scales of substrate to furnish preparative amounts of oxidized products. A chemoinformatic analysis supports that Mn(CF3-PDP) significantly expands the pharmaceutical chemical space accessible to small-molecule C-H oxidation catalysis.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fígado , Oxirredução , Sistema Enzimático do Citocromo P-450/química , Preparações Farmacêuticas/química , Catálise , Microssomos Hepáticos , Nitrogênio
2.
Adv Synth Catal ; 362(2): 417-423, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-32165875

RESUMO

Aromatic and heterocyclic functionality are ubiquitous in pharmaceuticals. Herein, we disclose a new Mn(PDP)catalyst system using chloroacetic acid additive capable of chemoselectively oxidizing remote tertiary C(sp 3)-H bonds in the presence of a broad range of aromatic and heterocyclic moieties. Although catalyst loadings can be lowered to 0.1 mol% under a Mn(PDP)/acetic acid system for aromatic and non-basic nitrogen heterocycle substrates, the Mn(PDP)/chloroacetic acid system generally affords 10-15% higher isolated yields on these substrates and is uniquely effective for remote C(sp 3)-H hydroxylations in substrates housing basic nitrogen heterocycles. The demonstrated ability to perform Mn(PDP)/chloroacetic acid C(sp 3)-H oxidations in pharmaceutically relevant complex molecules on multi-gram scales will facilitate drug discovery processes via late-stage functionalization.

3.
Org Biomol Chem ; 14(22): 4970-85, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27143279

RESUMO

Aspartyl proteases are important pharmacological targets. Historically aspartyl proteases have been commonly targeted with transition state derived peptidomimetics. The strategy to develop aspartyl protease inhibitors has undertaken a dramatic paradigm shift in the last 10 years. The pharmaceutical industry in 2005 disclosed several scaffolds or "head groups" that prompted the field to move beyond peptidomimetic derived inhibitors. Since the discovery of the first amino heterocycle aspartyl protease inhibitor, the amino hydantoin, industry and academia have positioned themselves for a foothold on the new molecular space, designing a variety of related "head groups". Both the design and synthetic efforts involved in constructing these scaffolds are varied and complex. Here we highlight the synthetic strategies used to access these amino heterocycle scaffolds.


Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Técnicas de Química Sintética/métodos , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Desenho de Fármacos , Compostos Heterocíclicos/química , Inibidores de Proteases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA