Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137959

RESUMO

In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.

2.
Mol Ecol ; 33(16): e17468, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39046252

RESUMO

The future survival of coral reefs in the Anthropocene depends on the capacity of corals to adapt as oceans warm and extreme weather events become more frequent. Targeted interventions designed to assist evolutionary processes in corals require a comprehensive understanding of the distribution and structure of standing variation, however, efforts to map genomic variation in corals have so far focussed almost exclusively on SNPs, overlooking structural variants that have been shown to drive adaptive processes in other taxa. Here, we show that the reef-building coral, Acropora kenti, harbours at least five large, highly polymorphic structural variants, all of which exhibit signatures of strongly suppressed recombination in heterokaryotypes, a feature commonly associated with chromosomal inversions. Based on their high minor allele frequency, uniform distribution across habitats and elevated genetic load, we propose that these inversions in A. kenti are likely to be under balancing selection. An excess of SNPs with high impact on protein-coding genes within these loci elevates their importance both as potential targets for adaptive selection and as contributors to genetic decline if coral populations become fragmented or inbred in future.


Assuntos
Antozoários , Inversão Cromossômica , Recifes de Corais , Polimorfismo de Nucleotídeo Único , Antozoários/genética , Inversão Cromossômica/genética , Animais , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética , Frequência do Gene , Carga Genética , Mutação , Genética Populacional
3.
NAR Genom Bioinform ; 6(1): lqae016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38344275

RESUMO

Dinoflagellates are a diverse group of phytoplankton, ranging from harmful bloom-forming microalgae to photosymbionts of coral reefs. Genome-scale data from dinoflagellates reveal atypical genomic features, extensive genomic divergence, and lineage-specific innovation of gene functions. Long non-coding RNAs (lncRNAs), known to regulate gene expression in eukaryotes, are largely unexplored in dinoflagellates. Here, using high-quality genome and transcriptome data, we identified 48039 polyadenylated lncRNAs in three dinoflagellate species: the coral symbionts Cladocopium proliferum and Durusdinium trenchii, and the bloom-forming species, Prorocentrum cordatum. These lncRNAs have fewer introns and lower G+C content than protein-coding sequences; 37 768 (78.6%) are unique with respect to sequence similarity. We classified all lncRNAs based on conserved motifs (k-mers) into distinct clusters, following properties of protein-binding and/or subcellular localisation. Interestingly, 3708 (7.7%) lncRNAs are differentially expressed under heat stress, algal lifestyle, and/or growth phase, and share co-expression patterns with protein-coding genes. Based on inferred triplex interactions between lncRNA and putative promoter regions, we identified 19 460 putative gene targets for 3721 lncRNAs; 907 genes exhibit differential expression under heat stress. These results reveal, for the first time, the diversity of lncRNAs in dinoflagellates and how lncRNAs may regulate gene expression as a heat-stress response in these ecologically important microbes.

4.
Sci Adv ; 10(29): eadn2218, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028812

RESUMO

The algal endosymbiont Durusdinium trenchii enhances the resilience of coral reefs under thermal stress. D. trenchii can live freely or in endosymbiosis, and the analysis of genetic markers suggests that this species has undergone whole-genome duplication (WGD). However, the evolutionary mechanisms that underpin the thermotolerance of this species are largely unknown. Here, we present genome assemblies for two D. trenchii isolates, confirm WGD in these taxa, and examine how selection has shaped the duplicated genome regions using gene expression data. We assess how the free-living versus endosymbiotic lifestyles have contributed to the retention and divergence of duplicated genes, and how these processes have enhanced the thermotolerance of D. trenchii. Our combined results suggest that lifestyle is the driver of post-WGD evolution in D. trenchii, with the free-living phase being the most important, followed by endosymbiosis. Adaptations to both lifestyles likely enabled D. trenchii to provide enhanced thermal stress protection to the host coral.


Assuntos
Antozoários , Duplicação Gênica , Genoma , Simbiose , Termotolerância , Simbiose/genética , Antozoários/genética , Antozoários/fisiologia , Antozoários/microbiologia , Animais , Termotolerância/genética , Recifes de Corais , Filogenia
5.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38655774

RESUMO

Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e. symbiogenesis) is hypothesized to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here, we present de novo assembled genomes (1.2-1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenization. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.


Assuntos
Dinoflagellida , Filogenia , Simbiose , Dinoflagellida/genética , Dinoflagellida/classificação , Evolução Molecular , Transcriptoma , Genoma de Protozoário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA