RESUMO
Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.
Assuntos
Transtorno Depressivo Maior , Metaloproteinase 8 da Matriz , Monócitos , Estresse Psicológico , Animais , Humanos , Camundongos , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/enzimologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Espaço Extracelular/metabolismo , Metaloproteinase 8 da Matriz/sangue , Metaloproteinase 8 da Matriz/deficiência , Metaloproteinase 8 da Matriz/genética , Metaloproteinase 8 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/química , Monócitos/imunologia , Monócitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Tecido Parenquimatoso/metabolismo , Análise da Expressão Gênica de Célula Única , Comportamento Social , Isolamento Social , Estresse Psicológico/sangue , Estresse Psicológico/genética , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismoRESUMO
In humans, traumatic social experiences can contribute to psychiatric disorders1. It is suggested that social trauma impairs brain reward function such that social behaviour is no longer rewarding, leading to severe social avoidance2,3. In rodents, the chronic social defeat stress (CSDS) model has been used to understand the neurobiology underlying stress susceptibility versus resilience following social trauma, yet little is known regarding its impact on social reward4,5. Here we show that, following CSDS, a subset of male and female mice, termed susceptible (SUS), avoid social interaction with non-aggressive, same-sex juvenile C57BL/6J mice and do not develop context-dependent social reward following encounters with them. Non-social stressors have no effect on social reward in either sex. Next, using whole-brain Fos mapping, in vivo Ca2+ imaging and whole-cell recordings, we identified a population of stress/threat-responsive lateral septum neurotensin (NTLS) neurons that are activated by juvenile social interactions only in SUS mice, but not in resilient or unstressed control mice. Optogenetic or chemogenetic manipulation of NTLS neurons and their downstream connections modulates social interaction and social reward. Together, these data suggest that previously rewarding social targets are possibly perceived as social threats in SUS mice, resulting from hyperactive NTLS neurons that occlude social reward processing.
Assuntos
Vias Neurais , Trauma Psicológico , Recompensa , Núcleos Septais , Comportamento Social , Estresse Psicológico , Animais , Feminino , Masculino , Camundongos , Encéfalo/patologia , Encéfalo/fisiopatologia , Cálcio/análise , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurotensina/metabolismo , Optogenética , Trauma Psicológico/patologia , Trauma Psicológico/fisiopatologia , Núcleos Septais/patologia , Núcleos Septais/fisiopatologia , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologiaRESUMO
Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.
Assuntos
Transtorno Depressivo Maior , Humanos , Tecido Adiposo , Ansiedade , Inflamação , ImunidadeRESUMO
Clinical studies have revealed a high comorbidity between autoimmune diseases and psychiatric disorders, including major depressive disorder (MDD). However, the mechanisms connecting autoimmunity and depression remain unclear. Here, we aim to identify the processes by which stress impacts the adaptive immune system and the implications of such responses to depression. To examine this relationship, we analyzed antibody responses and autoimmunity in the chronic social defeat stress (CSDS) model in mice, and in clinical samples from patients with MDD. We show that socially stressed mice have elevated serum antibody concentrations. We also confirm that social stress leads to the expansion of specific T and B cell populations within the cervical lymph nodes, where brain-derived antigens are preferentially delivered. Sera from stress-susceptible (SUS) mice exhibited high reactivity against brain tissue, and brain-reactive immunoglobulin G (IgG) antibody levels positively correlated with social avoidance behavior. IgG antibody concentrations in the brain were significantly higher in SUS mice than in unstressed mice, and positively correlated with social avoidance. Similarly, in humans, increased peripheral levels of brain-reactive IgG antibodies were associated with increased anhedonia. In vivo assessment of IgG antibodies showed they largely accumulate around blood vessels in the brain only in SUS mice. B cell-depleted mice exhibited stress resilience following CSDS, confirming the contribution of antibody-producing cells to social avoidance behavior. This study provides mechanistic insights connecting stress-induced autoimmune reactions against the brain and stress susceptibility. Therapeutic strategies targeting autoimmune responses might aid in the treatment of patients with MDD featuring immune abnormalities.
Assuntos
Autoimunidade , Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Encéfalo , Comportamento Social , Imunoglobulina G , Estresse Psicológico/psicologia , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: The pathophysiology of autism spectrum disorder (ASD) involves genetic and environmental factors. Mounting evidence demonstrates a role for the gut microbiome in ASD, with signaling via short-chain fatty acids (SCFA) as one mechanism. Here, we utilize mice carrying deletion to exons 4-22 of Shank3 (Shank3KO) to model gene by microbiome interactions in ASD. We identify SCFA acetate as a mediator of gut-brain interactions and show acetate supplementation reverses social deficits concomitant with alterations to medial prefrontal cortex (mPFC) transcriptional regulation independent of microbiome status. METHODS: Shank3KO and wild-type (Wt) littermates were divided into control, Antibiotic (Abx), Acetate and Abx + Acetate groups upon weaning. After six weeks, animals underwent behavioral testing. Molecular analysis including 16S and metagenomic sequencing, metabolomic and transcriptional profiling were conducted. Additionally, targeted serum metabolomic data from Phelan McDermid Syndrome (PMS) patients (who are heterozygous for the Shank3 gene) were leveraged to assess levels of SCFA's relative to ASD clinical measures. RESULTS: Shank3KO mice were found to display social deficits, dysregulated gut microbiome and decreased cecal levels of acetate - effects exacerbated by Abx treatment. RNA-sequencing of mPFC showed unique gene expression signature induced by microbiome depletion in the Shank3KO mice. Oral treatment with acetate reverses social deficits and results in marked changes in gene expression enriched for synaptic signaling, pathways among others, even in Abx treated mice. Clinical data showed sex specific correlations between levels of acetate and hyperactivity scores. CONCLUSION: These results suggest a key role for the gut microbiome and the neuroactive metabolite acetate in regulating ASD-like behaviors.
Assuntos
Transtorno do Espectro Autista , Humanos , Masculino , Feminino , Camundongos , Animais , Transtorno do Espectro Autista/genética , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal , Acetatos/farmacologia , Suplementos Nutricionais , Proteínas dos MicrofilamentosRESUMO
Obesity and elevation of circulating free fatty acids are associated with an accumulation and proinflammatory polarization of macrophages within metabolically active tissues, such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high-fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. Here we used a cell culture system as proof of concept to show that, upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we found that palmitate up-regulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, shown previously to allow transfer of nucleotides across membranes. These findings suggest that proinflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity.
Assuntos
Tecido Adiposo/metabolismo , Conexinas/fisiologia , Inflamação/imunologia , Macrófagos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neutrófilos/metabolismo , Nucleotídeos/farmacologia , Palmitatos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Animais , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Resistência à Insulina , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologiaRESUMO
Metabolic syndrome and major depression are two of the most common and debilitating disorders worldwide, occurring with significant rates of comorbidity. Recent studies have uncovered that each of these conditions is associated with chronic, low-grade inflammation. This is characterized by increased circulating pro-inflammatory cytokines, altered leukocyte population frequencies in blood, accumulation of immune cells in tissues including the brain, and activation of these immune cells. Cytokines that become elevated during obesity can contribute to the progression of metabolic syndrome by directly causing insulin resistance. During chronic stress, there is evidence that these cytokines promote depression-like behavior by disrupting neurotransmitter synthesis and signal transduction. Animal models of obesity and depression have revealed a bi-directional relationship whereby high-fat feeding and chronic stress synergize and exacerbate metabolic dysregulation and behavioral abnormalities. Although far from conclusive, emerging evidence suggests that inflammation in the central and peripheral immune system may link metabolic syndrome to major depressive disorder. In this review, we will synthesize available data supporting this view and identify critical areas for future investigation.
Assuntos
Transtorno Depressivo Maior/imunologia , Encefalite/imunologia , Mediadores da Inflamação/imunologia , Inflamação/imunologia , Síndrome Metabólica/imunologia , Animais , Citocinas/metabolismo , Transtorno Depressivo Maior/complicações , Encefalite/complicações , Humanos , Inflamação/complicações , Leucócitos/imunologia , Síndrome Metabólica/complicações , Obesidade/complicações , Obesidade/imunologia , Estresse Psicológico/complicações , Estresse Psicológico/imunologiaRESUMO
Major depressive disorder affects ~20% of the world population and is characterized by strong sexual dimorphism with females being two to three times more likely to develop this disorder. Previously, we demonstrated that a combination therapy with dihydrocaffeic acid and malvidin-glucoside to synergistically target peripheral inflammation and stress-induced synaptic maladaptation in the brain was effective in alleviating chronic social defeat stress (CSDS)-induced depression-like phenotype in male mice. Here, we test the combination therapy in a female CSDS model for depression and compared sex-specific responses to stress in the periphery and the central nervous system. Similar to male mice, the combination treatment is also effective in promoting resilience against the CSDS-induced depression-like behavior in female mice. However, there are sex-specific differences in peripheral immune responses and differential gene regulation in the prefrontal cortex to chronic stress and to the treatment. These data indicate that while therapeutic approaches to combat stress-related disorders may be effective in both sexes, the mechanisms underlying these effects differ, emphasizing the need for inclusion of both sexes in preclinical studies using animal models.
Assuntos
Transtorno Depressivo Maior/imunologia , Modelos Animais de Doenças , Imunidade/fisiologia , Córtex Pré-Frontal/imunologia , Caracteres Sexuais , Estresse Psicológico/imunologia , Animais , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/psicologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo , Derrota Social , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologiaRESUMO
Over the past years, we have embarked in a systematic analysis of the effect of obesity or fatty acids on circulating monocytes, microvascular endothelial cells, macrophages, and skeletal muscle cells. With the use of cell culture strategies, we have deconstructed complex physiological systems and then reconstructed "partial equations" to better understand cell-to-cell communication. Through these approaches, we identified that in high saturated fat environments, cell-autonomous proinflammatory pathways are activated in monocytes and endothelial cells, promoting monocyte adhesion and transmigration. We think of this as a paradigm of the conditions promoting immune cell infiltration into tissues during obesity. In concert, it is possible that muscle and adipose tissue secrete immune cell chemoattractants, and indeed, our tissue culture reconstructions reveal that myotubes treated with the saturated fatty acid palmitate, but not the unsaturated fatty acid palmitoleate, release nucleotides that attract monocytes and other compounds that promote proinflammatory classically activated "(M1)-like" polarization in macrophages. In addition, palmitate directly triggers an M1-like macrophage phenotype, and secretions from these activated macrophages confer insulin resistance to target muscle cells. Together, these studies suggest that in pathophysiological conditions of excess fat, the muscle, endothelial and immune cells engage in a synergistic crosstalk that exacerbates tissue inflammation, leukocyte infiltration, polarization, and consequent insulin resistance.
Assuntos
Comunicação Celular/fisiologia , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Músculo Esquelético/citologiaRESUMO
A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.
Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Polaridade Celular , Ácidos Graxos Monoinsaturados/imunologia , Macrófagos/imunologia , Obesidade/enzimologia , Obesidade/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismoRESUMO
Obesity is associated with metabolic tissue infiltration by monocyte-derived macrophages. Saturated fatty acids contribute to proinflammatory gene induction in tissue-embedded immune cells. However, it is unknown how circulating monocytes, the macrophage precursors, react to high-fat environments. In macrophages, saturated fatty acids activate inflammatory pathways and, notably, prime caspase-associated inflammasomes. Inflammasome-activated IL-1ß contributes to type 2 diabetes. We hypothesized that 1) human monocytes from obese patients show caspase activation, and 2) fatty acids trigger this response and consequent release of IL-1ß/IL-18. Human peripheral blood monocytes were sorted by flow cytometry, and caspase activity was measured with a FLICA dye-based assay. Blood monocytes from obese individuals exhibited elevated caspase activity. To explore the nature and consequence of this activity, human THP1 monocytes were exposed to saturated or unsaturated fatty acids. Caspase activity was revealed by isoform-specific cleavage and enzymatic activity; cytokine expression/release was measured by qPCR and ELISA. Palmitate, but not palmitoleate, increased caspase activity in parallel to the release of IL-1ß and IL-18. Palmitate induced eventual monocyte cell death with features of pyroptosis (an inflammation-linked cell death program involving caspase-4/5), scored through LDH release, vital dye influx, cell volume changes, and nuclear morphology. Notably, selective gene silencing or inhibition of caspase-4/5 reduced palmitate-induced release of IL-1ß and IL-18. In summary, monocytes from obese individuals present elevated caspase activity. Mechanistically, palmitate activates a pyroptotic program in monocytes through caspase-4/5, causing inflammatory cytokine release, additional to inflammasomes. These caspases represent potential, novel, therapeutic targets to taper obesity-associated inflammation.
Assuntos
Caspases Iniciadoras/efeitos dos fármacos , Caspases/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/farmacologia , Interleucina-1beta/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Obesidade/metabolismo , Sobrepeso/metabolismo , Adulto , Inibidores de Caspase/farmacologia , Caspases/genética , Caspases/metabolismo , Caspases Iniciadoras/genética , Caspases Iniciadoras/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/complicações , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos Monoinsaturados/farmacologia , Feminino , Citometria de Fluxo , Imunofluorescência , Inativação Gênica , Humanos , Immunoblotting , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Sobrepeso/complicações , Palmitatos/farmacologia , Projetos Piloto , Reação em Cadeia da Polimerase , Piroptose/efeitos dos fármacos , RNA Mensageiro/metabolismoRESUMO
Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue infiltration by immune cells.
Assuntos
Tecido Adiposo/citologia , Células Endoteliais/efeitos dos fármacos , Inflamação , Insulina/metabolismo , Monócitos/efeitos dos fármacos , Ácido Palmítico/farmacologia , Transcitose/efeitos dos fármacos , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Microvasos/citologia , Monócitos/fisiologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Chronic low-grade inflammation is an important contributor to the development of insulin resistance, a hallmark of type 2 diabetes mellitus (T2DM). Obesity and high-fat feeding lead to infiltration of immune cells into metabolic tissues, promoting inflammation and insulin resistance. We hypothesized that macrophages from mice lacking NOX2 (Cybb), an essential component of the NADPH oxidase complex highly expressed in immune cells and associated with their inflammatory response, would be less inflammatory and that these mice would be protected from the development of high-fat-induced insulin resistance. Bone marrow-derived macrophages from NOX2 knockout (NOX2-KO) mice expressed lower levels of inflammatory markers (Nos2, Il6); however, NOX2-KO mice were hyperphagic and gained more weight than wild-type (WT) mice when fed either a chow or a high-fat (HF) diet. Surprisingly, NOX2-KO mice stored less lipid in epididymal white adipose tissue but more lipid in liver and had higher indexes of liver inflammation and macrophage infiltration than WT mice. Contrary to our hypothesis, HF-fed NOX2-KO mice were hyperinsulinemic and more insulin resistant than HF-fed WT mice, likely as a result of their higher hepatic steatosis and inflammation. In summary, NOX2 depletion promoted hyperphagia, hepatic steatosis, and inflammation with either normal or high-fat feeding, exacerbating insulin resistance. We propose that NOX2 participates in food intake control and lipid distribution in mice.
Assuntos
Regulação do Apetite , Fígado Gorduroso/etiologia , Hiperfagia/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Comportamento Apetitivo , Comportamento Animal , Células Cultivadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/complicações , Hiperfagia/imunologia , Hiperfagia/patologia , Hiperfagia/fisiopatologia , Fígado/imunologia , Fígado/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/genética , Hepatopatia Gordurosa não Alcoólica , Obesidade/complicações , Obesidade/etiologiaRESUMO
Chronic stress induces changes in the periphery and the central nervous system (CNS) that contribute to neuropathology and behavioral abnormalities associated with psychiatric disorders. In this study, we examined the impact of peripheral and central inflammation during chronic social defeat stress (CSDS) in female mice. Compared to male mice, we found that female mice exhibited heightened peripheral inflammatory response and identified C-C motif chemokine ligand 5 (CCL5), as a stress-susceptibility marker in females. Blocking CCL5 signaling in the periphery promoted resilience to CSDS. In the brain, stress-susceptible mice displayed increased expression of C-C chemokine receptor 5 (CCR5), a receptor for CCL5, in microglia in the prefrontal cortex (PFC). This upregulation was associated with microglia morphological changes, their increased migration to the blood vessels, and enhanced phagocytosis of synaptic components and vascular material. These changes coincided with neurophysiological alterations and impaired blood-brain barrier (BBB) integrity. By blocking CCR5 signaling specifically in the PFC were able to prevent stress-induced physiological changes and rescue social avoidance behavior. Our findings are the first to demonstrate that stress-mediated dysregulation of the CCL5-CCR5 axis triggers excessive phagocytosis of synaptic materials and neurovascular components by microglia, resulting in disruptions in neurotransmission, reduced BBB integrity, and increased stress susceptibility. Our study provides new insights into the role of cortical microglia in female stress susceptibility and suggests that the CCL5-CCR5 axis may serve as a novel sex-specific therapeutic target for treating psychiatric disorders in females.
RESUMO
Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3,4,5, the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), thereby altering social behaviour. Using a combination of mass cytometry and single-cell RNA-sequencing, we performed high-dimensional phenotyping of immune cells in circulation and brain and demonstrate that peripheral monocytes are strongly affected by stress. Both peripheral and brain-infiltrating monocytes of SUS mice showed increased Mmp8 expression following CSDS. We further demonstrate that peripheral MMP8 directly infiltrates the NAc parenchyma to control the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a novel mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.
RESUMO
Ketamine has rapid and sustained antidepressant effects in patients with treatment-resistant depression (TRD). However, the underlying mechanisms of action are not well understood. There is increasing evidence that TRD is associated with a pro-inflammatory state and that ketamine may inhibit inflammatory processes. We thus investigated whole blood transcriptional profiles related to TRD and gene expression changes associated with treatment response to ketamine. Whole blood was collected at baseline (21 healthy controls [HC], 26 patients with TRD) and then again in patients with TRD 24 hours following a single intravenous infusion of ketamine (0.5 mg/kg). We performed RNA-sequencing and analyzed (a) baseline transcriptional profiles between patients with TRD and HC, (b) responders vs. non-responders before ketamine treatment, and (c) gene expression signatures associated with clinical improvement. At baseline, patients with TRD compared to HC showed a gene expression signature indicative of interferon signaling pathway activation. Prior to ketamine administration, the metabotropic glutamate receptor gene GRM2 and the ionotropic glutamate receptor gene GRIN2D were upregulated in responders compared to non-responders. Response to ketamine was associated with a distinct transcriptional signature, however, we did not observe gene expression changes indicative of an anti-inflammatory effect. Future studies are needed to determine the role of the peripheral immune system in the antidepressant effect of ketamine.
Assuntos
Transtorno Depressivo Resistente a Tratamento , Ketamina , Antidepressivos/uso terapêutico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/genética , Humanos , Infusões Intravenosas , Ketamina/uso terapêuticoRESUMO
Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, although gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.
Assuntos
Hierarquia Social , Camundongos/psicologia , Estresse Psicológico , Adaptação Psicológica , Animais , Comportamento Animal , Feminino , Masculino , Camundongos Endogâmicos C57BL , Distância Psicológica , Predomínio SocialRESUMO
Heightened aggression is characteristic of multiple neuropsychiatric disorders and can have various negative effects on patients, their families and the public. Recent studies in humans and animals have implicated brain reward circuits in aggression and suggest that, in subsets of aggressive individuals, domination of subordinate social targets is reinforcing. In this study, we showed that, in male mice, orexin neurons in the lateral hypothalamus activated a small population of glutamic acid decarboxylase 2 (GAD2)-expressing neurons in the lateral habenula (LHb) via orexin receptor 2 (OxR2) and that activation of these GAD2 neurons promoted male-male aggression and conditioned place preference for aggression-paired contexts. Moreover, LHb GAD2 neurons were inhibitory within the LHb and dampened the activity of the LHb as a whole. These results suggest that the orexin system is important for the regulation of inter-male aggressive behavior and provide the first functional evidence of a local inhibitory circuit within the LHb.
Assuntos
Agressão/fisiologia , Neurônios GABAérgicos/metabolismo , Habenula/metabolismo , Orexinas/metabolismo , Animais , Masculino , Camundongos , Transdução de Sinais/fisiologiaRESUMO
Chronic exposure to stress is a well-known risk factor for the development of mood and anxiety disorders. Promoting resilience to stress may prevent the development of these disorders, but resilience-enhancing compounds are not yet clinically available. One compound that has shown promise in the clinical setting is curcumin, a polyphenol compound found in the rhizome of the turmeric plant (Curcuma longa) with known anti-inflammatory and antidepressant properties. Here, we tested the efficacy of 1.5% dietary curcumin at promoting resilience to chronic social defeat stress (CSDS) in 129/SvEv mice, a strain that we show is highly susceptible to this type of stress. We found that administration of curcumin during CSDS produced a 4.5-fold increase in stress resilience, as measured by the social interaction test. Although the overall effects of curcumin were striking, we identified two distinct responses to curcumin. While 64% of defeated mice on curcumin were resilient (responders), the remaining 36% of mice were susceptible to the effects of stress (non-responders). Interestingly, responders released less corticosterone following acute restraint stress and had lower levels of peripheral IL-6 than nonresponders, implicating a role for the NF-κB pathway in treatment response. Importantly, curcumin also prevented anxiety-like behavior in both responders and non-responders in the elevated-plus maze and open field test. Collectively, our findings provide the first preclinical evidence that curcumin promotes resilience to CSDS and suggest that curcumin may prevent the emergence of a range of anxiety-like symptoms when given to individuals during exposure to chronic social stress.