Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biomacromolecules ; 18(9): 2866-2875, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731677

RESUMO

Interferon α2 is an antiviral/antiproliferative protein that is currently used to treat hepatitis C infections and several forms of cancer. Two PEGylated variants of interferon α2 (containing 12 and 40 kDa PEGs) are currently marketed and display longer plasma circulation times than that of unmodified interferon. With increasing realization that the lymphatic system plays an important role in the extrahepatic replication of the hepatitis C virus and in the metastatic dissemination of cancers, this study sought to evaluate PEGylation strategies to optimally enhance the antiviral activity and plasma and lymphatic exposure of interferon after subcutaneous administration in rats. The results showed that conjugation with a linear 20 kDa PEG provided the most ideal balance between activity and plasma and lymph exposure. A linear 5 kDa PEG variant also exhibited excellent plasma and lymph exposure to interferon activity when compared to those of unmodified interferon and the clinically available linear 12 kDa PEGylated construct.


Assuntos
Antivirais/síntese química , Interferon-alfa/síntese química , Sistema Linfático/metabolismo , Polietilenoglicóis/síntese química , Animais , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacocinética , Injeções Subcutâneas , Interferon-alfa/administração & dosagem , Interferon-alfa/química , Interferon-alfa/farmacocinética , Masculino , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Distribuição Tecidual
2.
Mol Pharm ; 13(4): 1229-41, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26871003

RESUMO

The lymphatic system is a major conduit by which many diseases spread and proliferate. There is therefore increasing interest in promoting better lymphatic drug targeting. Further, antibody fragments such as Fabs have several advantages over full length monoclonal antibodies but are subject to rapid plasma clearance, which can limit the lymphatic exposure and activity of Fabs against lymph-resident diseases. This study therefore explored ideal PEGylation strategies to maximize biological activity and lymphatic exposure using trastuzumab Fab' as a model. Specifically, the Fab' was conjugated with single linear 10 or 40 kDa PEG chains at the hinge region. PEGylation led to a 3-4-fold reduction in binding affinity to HER2, but antiproliferative activity against HER2-expressing BT474 cells was preserved. Lymphatic pharmacokinetics were then examined in thoracic lymph duct cannulated rats after intravenous and subcutaneous dosing at 2 mg/kg, and the data were evaluated via population pharmacokinetic modeling. The Fab' displayed limited lymphatic exposure, but conjugation of 10 kDa PEG improved exposure by approximately 11- and 5-fold after intravenous (15% dose collected in thoracic lymph over 30 h) and subcutaneous (9%) administration, respectively. Increasing the molecular weight of the PEG to 40 kDa, however, had no significant impact on lymphatic exposure after intravenous (14%) administration and only doubled lymphatic exposure after subcutaneous administration (18%) when compared to 10 kDa PEG-Fab'. The data therefore suggests that minimal PEGylation has the potential to enhance the exposure and activity of Fab's against lymph-resident diseases, while no significant benefit is achieved with very large PEGs.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Polietilenoglicóis/química , Trastuzumab/imunologia , Animais , Linhagem Celular Tumoral , Cromatografia em Gel , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
3.
Pharm Res ; 33(2): 510-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26486513

RESUMO

PURPOSE: Cancer metastasis to pulmonary lymph nodes dictates the need to deliver chemotherapeutic and diagnostic agents to the lung and associated lymph nodes. Drug conjugation to dendrimer-based delivery systems has the potential to reduce toxicity, enhance lung retention and promote lymphatic distribution in rats. The current study therefore evaluated the pharmacokinetics and lung lymphatic exposure of a PEGylated dendrimer following inhaled administration. METHODS: Plasma pharmacokinetics and disposition of a 22 kDa PEGylated dendrimer were compared after aerosol administration to rats and sheep. Lung-derived lymph could not be sampled in rats and so lymphatic transport of the dendrimer from the lung was assessed in sheep. RESULTS: Higher plasma concentrations were achieved when dendrimer was administered to the lungs of rats as a liquid instillation when compared to an aerosol. Plasma pharmacokinetics were similar between sheep and rats, although some differences in disposition patterns were evident. Unexpectedly, less than 0.5% of the aerosol dose was recovered in pulmonary lymph. CONCLUSIONS: The data suggest that rats provide a relevant model for assessing the pharmacokinetics of inhaled macromolecules prior to evaluation in larger animals, but that the pulmonary lymphatics are unlikely to play a major role in the absorption of nanocarriers from the lungs.


Assuntos
Dendrímeros/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Pulmão/metabolismo , Linfonodos/metabolismo , Polietilenoglicóis/farmacocinética , Administração por Inalação , Administração Intravenosa , Aerossóis/administração & dosagem , Aerossóis/química , Aerossóis/farmacocinética , Animais , Dendrímeros/administração & dosagem , Dendrímeros/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Feminino , Masculino , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Ovinos
4.
Mol Pharm ; 12(3): 794-809, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25644368

RESUMO

The lymphatic system plays a major role in the metastatic dissemination of cancer and has an integral role in immunity. PEGylation enhances drainage and lymphatic uptake following subcutaneous (sc) administration of proteins and protein-like polymers, but the impact of PEGylation of very large proteins (such as antibodies) on subcutaneous and lymphatic pharmacokinetics is unknown. This study therefore aimed to evaluate the impact of PEGylation on the sc absorption and lymphatic disposition of the anti-HER2 antibody trastuzumab in rats. PEG-trastuzumab was generated via the conjugation of a single 40 kDa PEG-NHS ester to trastuzumab. PEG-trastuzumab showed a 5-fold reduction in HER2 binding affinity, however the in vitro growth inhibitory effects were preserved as a result of changes in cellular trafficking when compared to native trastuzumab. The lymphatic pharmacokinetics of PEG-trastuzumab was evaluated in thoracic lymph duct cannulated rats after iv and sc administration and compared to the pharmacokinetics of native trastuzumab. The iv pharmacokinetics and lymphatic exposure of PEG-trastuzumab was similar when compared to trastuzumab. After sc administration, initial plasma pharmacokinetics and lymphatic exposure were also similar between PEG-trastuzumab and trastuzumab, but the absolute bioavailability of PEG-trastuzumab was 100% when compared to 86.1% bioavailability for trastuzumab. In contrast to trastuzumab, PEG-trastuzumab showed accelerated plasma clearance beginning approximately 7 days after sc, but not iv, administration, presumably as a result of the generation of anti-PEG IgM. This work suggests that PEGylation does not significantly alter the lymphatic disposition of very large proteins, and further suggests that it is unlikely to benefit therapy with monoclonal antibodies.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Trastuzumab/administração & dosagem , Trastuzumab/metabolismo , Administração Intravenosa , Animais , Antineoplásicos/química , Biofarmácia , Permeabilidade Capilar , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoglobulina M/biossíntese , Imunoglobulina M/sangue , Injeções Subcutâneas , Linfa/metabolismo , Sistema Linfático/metabolismo , Masculino , Taxa de Depuração Metabólica , Modelos Biológicos , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Trastuzumab/química
5.
Mol Pharm ; 12(2): 432-43, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25485615

RESUMO

The current study sought to explore whether the subcutaneous administration of lymph targeted dendrimers, conjugated with a model chemotherapeutic (methotrexate, MTX), was able to enhance anticancer activity against lymph node metastases. The lymphatic pharmacokinetics and antitumor activity of PEGylated polylysine dendrimers conjugated to MTX [D-MTX(OH)] via a tumor-labile hexapeptide linker was examined in rats and compared to a similar system where MTX was α-carboxyl O-tert-butylated [D-MTX(OtBu)]. The latter has previously been shown to exhibit longer plasma circulation times. D-MTX(OtBu) was well absorbed from the subcutaneous injection site via the lymph, and 3 to 4%/g of the dose was retained by sentinel lymph nodes. In contrast, D-MTX(OH) showed limited absorption from the subcutaneous injection site, but absorption was almost exclusively via the lymph. The retention of D-MTX(OH) by sentinel lymph nodes was also significantly elevated (approximately 30% dose/g). MTX alone was not absorbed into the lymph. All dendrimers displayed lower lymph node targeting after intravenous administration. Despite significant differences in the lymph node retention of D-MTX(OH) and D-MTX(OtBu) after subcutaneous and intravenous administration, the growth of lymph node metastases was similarly inhibited. In contrast, the administration of MTX alone did not significantly reduce lymph node tumor growth. Subcutaneous administration of drug-conjugated dendrimers therefore provides an opportunity to improve drug deposition in downstream tumor-burdened lymph nodes. In this case, however, increased lymph node biodistribution did not correlate well with antitumor activity, possibly suggesting constrained drug release at the site of action.


Assuntos
Dendrímeros/química , Dendrímeros/farmacocinética , Linfonodos/metabolismo , Metotrexato/química , Metotrexato/farmacocinética , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Masculino , Microscopia Confocal , Neoplasias/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
6.
J Biol Chem ; 287(49): 41152-64, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23024363

RESUMO

Human gene-2 (H2) relaxin is currently in Phase III clinical trials for the treatment of acute heart failure. It is a 53-amino acid insulin-like peptide comprising two chains and three disulfide bonds. It interacts with two of the relaxin family peptide (RXFP) receptors. Although its cognate receptor is RXFP1, it is also able to cross-react with RXFP2, the native receptor for a related peptide, insulin-like peptide 3. In order to understand the basis of this cross-reactivity, it is important to elucidate both binding and activation mechanisms of this peptide. The primary binding mechanism of this hormone has been extensively studied and well defined. H2 relaxin binds to the leucine-rich repeats of RXFP1 and RXFP2 using B-chain-specific residues. However, little is known about the secondary interaction that involves the A-chain of H2 relaxin and transmembrane exoloops of the receptors. We demonstrate here through extensive mutation of the A-chain that the secondary interaction between H2 relaxin and RXFP1 is not driven by any single amino acid, although residues Tyr-3, Leu-20, and Phe-23 appear to contribute. Interestingly, these same three residues are important drivers of the affinity and activity of H2 relaxin for RXFP2 with additional minor contributions from Lys-9, His-12, Lys-17, Arg-18, and Arg-22. Our results provide new insights into the mechanism of secondary activation interaction of RXFP1 and RXFP2 by H2 relaxin, leading to a potent and RXFP1-selective analog, H2:A(4-24)(F23A), which was tested in vitro and in vivo and found to significantly inhibit collagen deposition similar to native H2 relaxin.


Assuntos
Receptores Acoplados a Proteínas G/química , Relaxina/química , Alanina/química , Dicroísmo Circular/métodos , AMP Cíclico/metabolismo , Fibrose/patologia , Células HEK293 , Humanos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Hormônios Peptídicos/química , Peptídeos/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/genética , Relaxina/genética
7.
J Biol Chem ; 286(43): 37555-65, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21878627

RESUMO

H2 relaxin is a peptide hormone associated with a number of therapeutically relevant physiological effects, including regulation of collagen metabolism and multiple vascular control pathways. It is currently in phase III clinical trials for the treatment of acute heart failure due to its ability to induce vasodilation and influence renal function. It comprises 53 amino acids and is characterized by two separate polypeptide chains (A-B) that are cross-linked by three disulfide bonds. This size and complex structure represents a considerable challenge for the chemical synthesis of H2 relaxin, a major limiting factor for the exploration of modifications and derivatizations of this peptide, to optimize effect and drug-like characteristics. To address this issue, we describe the solid phase peptide synthesis and structural and functional evaluation of 24 analogues of H2 relaxin with truncations at the termini of its peptide chains. We show that it is possible to significantly truncate both the N and C termini of the B-chain while still retaining potent biological activity. This suggests that these regions are not critical for interactions with the H2 relaxin receptor, RXFP1. In contrast, truncations do reduce the activity of H2 relaxin for the related receptor RXFP2 by improving RXFP1 selectivity. In addition to new mechanistic insights into the function of H2 relaxin, this study identifies a critical active core with 38 amino acids. This minimized core shows similar antifibrotic activity as native H2 relaxin when tested in human BJ3 cells and thus represents an attractive receptor-selective lead for the development of novel relaxin therapeutics.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Relaxina/química , Relaxina/metabolismo , Linhagem Celular , Humanos , Peptídeos/síntese química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relação Estrutura-Atividade
8.
Biochem Biophys Res Commun ; 420(2): 253-6, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22425984

RESUMO

Diethylenetriamine pentaacetic acid (DTPA) is a popular chelator agent for enabling the labeling of peptides for their use in structure-activity relationship study and biodistribution analysis. Solid phase peptide synthesis was employed to couple this commercially available chelator at the N-terminus of either the A-chain or B-chain of H2 relaxin. The coupling of the DTPA chelator at the N-terminus of the B-chain and subsequent loading of a lanthanide (europium) ion into the chelator led to a labeled peptide (Eu-DTPA-(B)-H2) in low yield and having very poor water solubility. On the other hand, coupling of the DTPA and loading of Eu at the N-terminus of the A-chain led to a water-soluble peptide (Eu-DTPA-(A)-H2) with a significantly improved final yield. The conjugation of the DTPA chelator at the N-terminus of the A-chain did not have any impact on the secondary structure of the peptide determined by circular dichroism spectroscopy (CD). On the other hand, it was not possible to determine the secondary structure of Eu-DTPA-(B)-H2 because of its insolubility in phosphate buffer. The B-chain labeled peptide Eu-DTPA-(B)-H2 required solubilization in DMSO prior to carrying out binding assays, and showed lower affinity for binding to H2 relaxin receptor, RXFP1, compared to the water-soluble A-chain labeled peptide Eu-DTPA-(A)-H2. The mono-Eu-DTPA labeled A-chain peptide, Eu-DTPA-(A)-H2, thus can be used as a valuable probe to study ligand-receptor interactions of therapeutically important H2 relaxin analogs. Our results show that it is critical to choose an approriate site for incorporating chelators such as DTPA. Otherwise, the bulky size of the chelator, depending on the site of incorporation, can affect yield, solubility, structure and pharmacological profile of the peptide.


Assuntos
Quelantes/química , Elementos da Série dos Lantanídeos/química , Ácido Pentético/química , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/síntese química , Relaxina/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Relaxina/química , Técnicas de Síntese em Fase Sólida
9.
Int J Pharm ; 608: 121075, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34481889

RESUMO

PEGylation is the standard approach for prolonging the plasma exposure of protein therapeutics but has limitations. We explored whether polymers prepared by Reversible Addition-Fragmentation chain-Transfer (RAFT) may provide better alternatives to polyethylene glycol (PEG). Four RAFT polymers were synthesised with varying compositions, molar mass (Mn), and structures, including a homopolymer of N-(2-hydroxypropyl)methacrylamide, (pHPMA) and statistical copolymers of HPMA with poly(ethylene glycol methyl ether acrylate) p(HPMA-co-PEGA); HPMA and N-acryloylmorpholine, p(HPMA-co-NAM); and HPMA and N-isopropylacrylamide, p(HPMA-co-NIPAM). The intravenous pharmacokinetics of the polymers were then evaluated in rats. The in vitro activity and in vivo pharmacokinetics of p(HPMA-co-NIPAM)-conjugated trastuzumab Fab' and full length mAb were then evaluated. p(HPMA-co-NIPAM) prolonged plasma exposure more avidly compared to the other p(HPMA) polymers or PEG, irrespective of molecular weight. When conjugated to trastuzumab-Fab', p(HPMA-co-NIPAM) prolonged plasma exposure of the Fab' similar to PEG-Fab'. The generation of anti-PEG IgM in rats 7 days after intravenous and subcutaneous dosing of p(HPMA-co-NIPAM) conjugated trastuzumab mAb was also examined and was shown to exhibit lower immunogenicity than the PEGylated construct. These data suggest that p(HPMA-co-NIPAM) has potential as a promising copolymer for use as an alternative conjugation strategy to PEG, to prolong the plasma exposure of therapeutic proteins.


Assuntos
Polietilenoglicóis , Polímeros , Animais , Metacrilatos , Ratos , Trastuzumab
10.
Eur J Pharm Biopharm ; 137: 218-226, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30851352

RESUMO

HIV therapy with anti-retroviral drugs is limited by the poor exposure of viral reservoirs, such as lymphoid tissue, to these small molecule drugs. We therefore investigated the effect of PEGylation on the anti-retroviral activity and subcutaneous lymphatic pharmacokinetics of the peptide-based fusion inhibitor enfuvirtide in thoracic lymph duct cannulated rats. Both the peptide and the PEG were quantified in plasma and lymph via ELISA. Conjugation to a single 5 kDa linear PEG decreased anti-HIV activity three-fold compared to enfuvirtide. Whilst plasma and lymphatic exposure to peptide mass was moderately increased, the loss of anti-viral activity led to an overall decrease in exposure to enfuvirtide activity. A 20 kDa 4-arm branched PEG conjugated with an average of two enfuvirtide peptides decreased peptide activity by six-fold. Plasma and lymph exposure to enfuvirtide, however, increased significantly such that anti-viral activity was increased two- and six-fold respectively. The results suggest that a multi-enfuvirtide-PEG complex may optimally enhance the anti-retroviral activity of the peptide in plasma and lymph.


Assuntos
Enfuvirtida/administração & dosagem , Inibidores da Fusão de HIV/administração & dosagem , HIV/efeitos dos fármacos , Polietilenoglicóis/química , Animais , Linhagem Celular , Enfuvirtida/farmacocinética , Enfuvirtida/farmacologia , Ensaio de Imunoadsorção Enzimática , Inibidores da Fusão de HIV/farmacocinética , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Humanos , Linfa/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
11.
J Pharm Sci ; 104(4): 1421-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631360

RESUMO

The utility of inhaled protein therapeutics to treat lung-resident diseases is limited by protein degradation in the lungs and rapid clearance. This study therefore aimed to evaluate the impact of PEGylation on the lung and systemic exposure of interferon (IFN) α2 after intratracheal administration to rats. An inverse correlation was observed between PEG chain length and systemic exposure, where bioavailability was 5.5% for the 31 kDa PEGylated construct and <0.4% for the 60 kDa PEGylated construct when compared with 15% for native IFN (19 kDa). Retention of PEGylated IFNα within the lungs increased 2.5-fold to threefold when compared with native IFN. When comparing the lung and systemic exposure of PEGylated and native IFN in terms of protein biological activity, the 31 kDa PEGylated construct increased exposure by 50% and 100%, respectively, when compared with native IFN, but the 60 kDa PEG construct offered no benefit. Preliminary work also indicated that the conjugation of IFNγ with 10 kDa PEG significantly increases the retention of the protein within the lung. Optimal PEGylation may therefore be used as a means to improve the exposure of lung-resident diseases to therapeutic cytokines and potentially reduce systemic exposure and side effects as well as dosing frequency.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Interferon-alfa/administração & dosagem , Interferon gama/administração & dosagem , Pulmão/metabolismo , Polietilenoglicóis/administração & dosagem , Administração por Inalação , Animais , Antineoplásicos/sangue , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Relação Dose-Resposta a Droga , Humanos , Interferon alfa-2 , Interferon-alfa/sangue , Interferon-alfa/química , Interferon-alfa/farmacocinética , Interferon gama/sangue , Interferon gama/química , Interferon gama/farmacocinética , Modelos Lineares , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Modelos Biológicos , Peso Molecular , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/sangue , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Tecnologia Farmacêutica/métodos
12.
Front Chem ; 1: 30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24790958

RESUMO

Relaxin, a heterodimeric polypeptide hormone, is a key regulator of collagen metabolism and multiple vascular control pathways in humans and rodents. Its actions are mediated via its cognate G-protein-coupled receptor, RXFP1 although it also "pharmacologically" activates RXFP2, the receptor for the related, insulin-like peptide 3 (INSL3), which has specific actions on reproduction and bone metabolism. Therefore, experimental tools to facilitate insights into the distinct biological actions of relaxin and INSL3 are required, particularly for studies of tissues containing both RXFP1 and RXFP2. Here, we chemically functionalized human (H2) relaxin, the RXFP1-selective relaxin analog H2:A(4-24)(F23A), and INSL3 to accommodate a fluorophore without marked reduction in binding or activation propensity. Chemical synthesis of the two chains for each peptide was followed by sequential regioselective formation of their three disulfide bonds. Click chemistry conjugation of Cy5.5 at the B-chain N-terminus, with conservation of the disulfide bonds, yielded analogs displaying appropriate selective binding affinity and ability to activate RXFP1 and/or RXFP2 in vitro. The in vivo biological activity of Cy5.5-H2 relaxin and Cy5.5-H2:A(4-24)(F23A) was confirmed in mice, as acute intracerebroventricular (icv) infusion of these peptides (but not Cy5.5-INSL3) stimulated water drinking, an established behavioral response elicited by central RXFP1 activation. The central distribution of Cy5.5-conjugated peptides was examined in mice killed 30 min after infusion, revealing higher fluorescence within brain tissue near-adjacent to the cerebral ventricle walls relative to deeper brain areas. Production of fluorophore-conjugated relaxin family peptides will facilitate future pharmacological studies to probe the function of H2 relaxin/RXFP1 and INSL3/RXFP2 signaling in vivo while tracking their distribution following central or peripheral administration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA