Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 11(6): 1460-9, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20481478

RESUMO

A collagen-mimetic polymer that can be easily engineered with specific cell-responsive and mechanical properties would be of significant interest for fundamental cell-matrix studies and applications in regenerative medicine. However, oligonucleotide-based synthesis of full-length collagen has been encumbered by the characteristic glycine-X-Y sequence repetition, which promotes mismatched oligonucleotide hybridizations during de novo gene assembly. In this work, we report a novel, modular synthesis strategy that yields full-length human collagen III and specifically defined variants. We used a computational algorithm that applies codon degeneracy to design oligonucleotides that favor correct hybridizations while disrupting incorrect ones for gene synthesis. The resulting recombinant polymers were expressed in Saccharomyces cerevisiae engineered with prolyl-4-hydroxylase. Our modular approach enabled mixing-and-matching domains to fabricate different combinations of collagen variants that contained different secretion signals at the N-terminus and cysteine residues imbedded within the triple-helical domain at precisely defined locations. This work shows the flexibility of our strategy for designing and assembling specifically tailored biomimetic collagen polymers with re-engineered properties.


Assuntos
Materiais Biomiméticos/química , Colágeno Tipo III/genética , Engenharia de Proteínas , Proteínas Recombinantes/genética , Clonagem Molecular , Colágeno Tipo III/química , Cisteína/química , Cisteína/genética , Humanos , Sondas de Oligonucleotídeos/química , Sondas de Oligonucleotídeos/genética , Plasmídeos , Pró-Colágeno-Prolina Dioxigenase/genética , Proteínas Recombinantes/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
2.
Biomaterials ; 53: 309-17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25890729

RESUMO

Collagen's ability to direct cellular behavior suggests that redesigning it at the molecular level could enable manipulation of cells residing in an engineered microenvironment. However, the fabrication of full-length collagen mimics of specified sequence de novo has been elusive, and applications still rely on material from native tissues. Using a bottom-up strategy, we synthesized modular genes and expressed recombinant human collagen variants in Saccharomyces cerevisiae. The resulting biopolymers contained prescribed cell-interaction sites that can direct and tune cellular responses, with retention of the important triple-helical self-assembled structure. Removal of the native integrin-binding sites GROGER, GAOGER, GLOGEN, GLKGEN, and GMOGER in human collagen III yielded collagen that did not support adhesion of mammalian cells. Introduction of GFOGER sequences to this scaffold at specified locations and densities resulted in varying degrees of cellular attachment. The recruitment of focal adhesion complexes on the different collagens ranged from a 96% reduction to a 56% increase over native collagen I. Adhesion to the GFOGER-containing variants was entirely dependent and partially dependent on the ß1 and α2 subunits of integrin, respectively, with cell adhesion on average reduced by 86% with anti-ß1 and 38% with anti-α2 integrin antibody incubation. Results support the importance of local context in collagen-cell interactions. The investigation demonstrates the flexibility of this approach to introduce targeted changes throughout the collagen polymer for producing fully-prescribed variants with tailored properties.


Assuntos
Colágeno/química , Sítios de Ligação , Colágeno/genética , Colágeno/metabolismo , Escherichia coli/genética , Humanos , Integrinas/metabolismo , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA