Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 13(8): 3594-601, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23859121

RESUMO

Two new Raman modes below 100 cm(-1) are observed in twisted bilayer graphene grown by chemical vapor deposition. The two modes are observed in a small range of twisting angle at which the intensity of the G Raman peak is strongly enhanced, indicating that these low energy modes and the G Raman mode share the same resonance enhancement mechanism, as a function of twisting angle. The ~94 cm(-1) mode (measured with a 532 nm laser excitation) is assigned to the fundamental layer breathing vibration (ZO' mode) mediated by the twisted bilayer graphene lattice, which lacks long-range translational symmetry. The dependence of this mode's frequency and line width on the rotational angle can be explained by the double resonance Raman process that is different from the previously identified Raman processes activated by twisted bilayer graphene superlattice. The dependence also reveals the strong impact of electronic-band overlaps of the two graphene layers. Another new mode at ~52 cm(-1), not observed previously in the bilayer graphene system, is tentatively attributed to a torsion mode in which the bottom and top graphene layers rotate out-of-phase in the plane.

2.
Nanotechnology ; 23(45): 455703, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23064215

RESUMO

Two infrared (IR)-active vibrational modes, observed at 93 and 113 cm(-1) in Raman scattering, are evidence of an inversion symmetry breakdown in thin (~10 nm) nanoplates of topological insulator Bi(2)Te(3) as-grown on SiO(2). Both Raman and IR modes are preserved after typical device fabrication processes. In nanoplates transferred to another SiO(2) substrate via contact printing, however, the IR modes are absent, and the Raman spectra are similar to those from bulk samples. The differences between as-grown and transferred nanoplates may result from nanoplate-substrate interactions.

3.
J Food Prot ; 76(10): 1778-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24112580

RESUMO

Mechanical tenderization improves the palatability of beef; however, it increases the risk of translocating pathogenic bacteria to the interior of beef cuts. This study investigated the efficacies of lactic acid spray (LA; 5 % ), storage, and cooking on the survivability of Escherichia coli O157:H7 in mechanically tenderized beef steaks managed under simulated industry conditions. Beef subprimals inoculated with either high (10(5) CFU/ml) or low (10(3) CFU/ml) levels of E. coli O157:H7 were treated (LA or control) and stored for 21 days prior to mechanical tenderization, steak portioning (2.54 cm), and additional storage for 7 days. Steaks were then cooked to an internal temperature of 55, 60, 65, 70, or 75°C. Samples were enumerated and analyzed using DNA-based methods. Treatment with LA immediately reduced E. coli O157:H7 on the lean and fat surfaces of high- and low-inoculum-treated subprimals by more than 1.0 log CFU/cm(2) (P < 0.05). Storage for 21 days reduced surface populations of E. coli O157:H7 regardless of the inoculation level; however, the populations on LA- and control-treated lean surfaces of high- and low-inoculum-treated subprimals were not different after 21 days (P > 0.05). E. coli O157:H7 was detected in core samples from high-inoculum-treated steaks cooked to 55, 60, or 70°C. Conversely, E. coli O157:H7 was not detected in core samples from low-inoculum-treated steaks, regardless of the internal cooking temperature. These data suggest that LA- and storage-mediated reduction of pathogens on subprimals exposed to typical industry contamination levels (10(1) CFU/cm(2)) reduces the risk of pathogen translocation and subsequent survival after cooking.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Ácido Láctico/farmacologia , Carne/microbiologia , Animais , Bovinos , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Microbiologia de Alimentos , Humanos , Viabilidade Microbiana , Temperatura , Fatores de Tempo
4.
Nanoscale ; 5(10): 4337-43, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23563061

RESUMO

Topological insulators are novel quantum materials with metallic surface transport but insulating bulk behavior. Often, topological insulators are dominated by bulk contributions due to defect induced bulk carriers, making it difficult to isolate the more interesting surface transport characteristics. Here, we report the synthesis and characterization of nanosheets of a topological insulator Bi2Se3 with variable Sb-doping levels to control the electron carrier density and surface transport behavior. (Bi(1-x)Sb(x))2Se3 thin films of thickness less than 10 nm are prepared by epitaxial growth on mica substrates in a vapor transport setup. The introduction of Sb in Bi2Se3 effectively suppresses the room temperature electron density from ∼4 × 10(13) cm(-2) in pure Bi2Se3 (x = 0) to ∼2 × 10(12) cm(-2) in (Bi(1-x)Sb(x))2Se3 at x ∼ 0.15, while maintaining the metallic transport behavior. At x ≳ ∼0.20, a metal-insulator transition (MIT) is observed, indicating that the system has transformed into an insulator in which the metallic surface conduction is blocked. In agreement with the observed MIT, Raman spectroscopy reveals the emergence of vibrational modes arising from Sb-Sb and Sb-Se bonds at high Sb concentrations, confirming the appearance of the Sb2Se3 crystal structure in the sample. These results suggest that nanostructured chalcogenide films with controlled doping can be a tunable platform for fundamental studies and electronic applications of topological insulator systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA