RESUMO
ABSTRACT: Faculty in graduate nursing education have been challenged when teaching first-year family nurse practitioner students to accurately assess a patient and build a subjective, objective, assessment, and plan note (SOAP note) through history taking and patient interviews. Students' familiarity with peer discussion can assist with learning the SOAP note process. Using peer discussion, faculty were able to make the learning process student friendly and useful in future clinical settings.
Assuntos
Educação de Pós-Graduação em Enfermagem , Estudantes de Enfermagem , Avaliação Educacional , Docentes , Humanos , Aprendizagem , Grupo AssociadoRESUMO
Quiescent long-term somatic stem cells reside in plant and animal stem cell niches. Within the Arabidopsis root stem cell population, the Quiescent Centre (QC), which contains slowly dividing cells, maintains surrounding short-term stem cells and may act as a long-term reservoir for stem cells. The RETINOBLASTOMA-RELATED (RBR) protein cell-autonomously reinforces mitotic quiescence in the QC. RBR interacts with the stem cell transcription factor SCARECROW (SCR) through an LxCxE motif. Disruption of this interaction by point mutation in SCR or RBR promotes asymmetric divisions in the QC that renew short-term stem cells. Analysis of the in vivo role of quiescence in the root stem cell niche reveals that slow cycling within the QC is not needed for structural integrity of the niche but allows the growing root to cope with DNA damage.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Meristema/citologia , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proliferação de Células , Técnicas de Silenciamento de Genes , Meristema/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Nicho de Células-Tronco , Células-Tronco/fisiologiaRESUMO
Paramutation is a well-studied epigenetic phenomenon in which trans communication between two different alleles leads to meiotically heritable transcriptional silencing of one of the alleles. Paramutation at the b1 locus involves RNA-mediated transcriptional silencing and requires specific tandem repeats that generate siRNAs. This study addressed three important questions: 1) are the tandem repeats sufficient for paramutation, 2) do they need to be in an allelic position to mediate paramutation, and 3) is there an association between the ability to mediate paramutation and repeat DNA methylation levels? Paramutation was achieved using multiple transgenes containing the b1 tandem repeats, including events with tandem repeats of only one half of the repeat unit (413 bp), demonstrating that these sequences are sufficient for paramutation and an allelic position is not required for the repeats to communicate. Furthermore, the transgenic tandem repeats increased the expression of a reporter gene in maize, demonstrating the repeats contain transcriptional regulatory sequences. Transgene-mediated paramutation required the mediator of paramutation1 gene, which is necessary for endogenous paramutation, suggesting endogenous and transgene-mediated paramutation both require an RNA-mediated transcriptional silencing pathway. While all tested repeat transgenes produced small interfering RNAs (siRNAs), not all transgenes induced paramutation suggesting that, as with endogenous alleles, siRNA production is not sufficient for paramutation. The repeat transgene-induced silencing was less efficiently transmitted than silencing induced by the repeats of endogenous b1 alleles, which is always 100% efficient. The variability in the strength of the repeat transgene-induced silencing enabled testing whether the extent of DNA methylation within the repeats correlated with differences in efficiency of paramutation. Transgene-induced paramutation does not require extensive DNA methylation within the transgene. However, increased DNA methylation within the endogenous b1 repeats after transgene-induced paramutation was associated with stronger silencing of the endogenous allele.
Assuntos
Metilação de DNA/genética , Epigênese Genética , Sequências de Repetição em Tandem/genética , Transcrição Gênica , Alelos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Mutação , Plantas Geneticamente Modificadas/genética , RNA/genética , RNA Interferente Pequeno/genética , Zea mays/genética , Zea mays/metabolismoRESUMO
To understand the molecular mechanisms underlying paramutation, we examined the role of Unstable factor for orange1 (Ufo1) in maintaining paramutation at the maize pericarp color1 (p1) and booster1 (b1) loci. Genetic tests revealed that the Ufo1-1 mutation disrupted silencing associated with paramutation at both p1 and b1. The level of up regulation achieved at b1 was lower than that at p1, suggesting differences in the role Ufo1-1 plays at these loci. We characterized the interaction of Ufo1-1 with two silenced p1 epialleles, P1-rr' and P1-pr(TP), that were derived from a common P1-rr ancestor. Both alleles are phenotypically indistinguishable, but differ in their paramutagenic activity; P1-rr' is paramutagenic to P1-rr, while P1-pr(TP) is non-paramutagenic. Analysis of cytosine methylation revealed striking differences within an enhancer fragment that is required for paramutation; P1-rr' exhibited increased methylation at symmetric (CG and CHG) and asymmetric (CHH) sites, while P1-pr(TP) was methylated only at symmetric sites. Both silenced alleles had higher levels of dimethylation of lysine 9 on histone 3 (H3K9me2), an epigenetic mark of silent chromatin, in the enhancer region. Both epialleles were reactivated in the Ufo1-1 background; however, reactivation of P1-rr' was associated with dramatic loss of symmetric and asymmetric cytosine methylation in the enhancer, while methylation of up-regulated P1-pr(TP) was not affected. Interestingly, Ufo1-1-mediated reactivation of both alleles was accompanied with loss of H3K9me2 mark from the enhancer region. Therefore, while earlier studies have shown correlation between H3K9me2 and DNA methylation, our study shows that these two epigenetic marks are uncoupled in the Ufo1-1-reactivated p1 alleles. Furthermore, while CHH methylation at the enhancer region appears to be the major distinguishing mark between paramutagenic and non-paramutagenic p1 alleles, H3K9me2 mark appears to be important for maintaining epigenetic silencing.
Assuntos
Inativação Gênica , Mutação , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo , Alelos , Metilação de DNA , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Ordem dos Genes , Histonas/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Ativação TranscricionalRESUMO
Paramutation is a transfer of heritable silencing states between interacting endogenous alleles or between endogenous alleles and homologous transgenes. Prior results demonstrated that paramutation occurs at the P1-rr (red pericarp and red cob) allele of the maize p1 (pericarp color 1) gene when exposed to a transgene containing a 1.2-kb enhancer fragment (P1.2) of P1-rr. The paramutable P1-rr allele undergoes transcriptional silencing resulting in a paramutant light-pigmented P1-rr' state. To define more precisely the sequences required to elicit paramutation, the P1.2 fragment was further subdivided, and the fragments transformed into maize plants and crossed with P1-rr. Analysis of the progeny plants showed that the sequences required for paramutation are located within a â¼600-bp segment of P1.2 and that this segment overlaps with a previously identified enhancer that is present in 4 direct repeats in P1-rr. The paramutagenic segment is transcribed in both the expressed P1-rr and the silenced P1-rr'. Transcription is sensitive to α-amanitin, indicating that RNA polymerase II mediates most of the transcription of this sequence. Although transcription within the paramutagenic sequence was similar in all tested genotypes, small RNAs were more abundant in the silenced P1-rr' epiallele relative to the expressed P1-rr allele. In agreement with prior results indicating the association of RNA-mediated DNA methylation in p1 paramutation, DNA blot analyses detected increased cytosine methylation of the paramutant P1-rr' sequences homologous to the transgenic P1.2 subfragments. Together these results demonstrate that the P1-rr enhancer repeats mediate p1 paramutation.
Assuntos
Metilação de DNA , Zea mays , Zea mays/genética , Mutação , Plantas/genética , RNA , Elementos Facilitadores Genéticos , Alelos , Regulação da Expressão Gênica de PlantasRESUMO
Paramutation is the ability of specific DNA sequences to communicate in trans to establish meiotically heritable expression states. Paramutation at the maize b1 locus is mediated by seven unique noncoding transcribed tandem repeats of 853 bp that are required to establish and maintain the meiotically heritable expression and distinct chromatin states associated with b1 paramutation. In this study, we report the identification of a CXC-domain protein CBBP (CXC domain b1-repeat binding protein) that binds to a defined region within the b1 tandem repeat sequence in vivo and in vitro. When CBBP is expressed from a transgene in maize, it can induce a silent state at the b1 locus that is heritable in progeny no longer containing the transgene, and the silent epiallele is capable of silencing an active epiallele, characteristic of paramutation. Accumulation of the CBBP protein correlates with b1 silencing in transgenic and nontransgenic plants. The ability of CBBP to form multimers and to bind to the b1 tandem repeats suggests a model for counting the number of b1 repeats. In contrast to previously identified proteins involved in paramutation, CBBP does not share similarity to the known components of the Arabidopsis RNAi heterochromatin silencing pathway. Thus, this study defines another class of protein that is involved in heritable gene silencing.
Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Plantas/genética , Zea mays/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Inativação Gênica , Modelos Genéticos , Mutação , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequências de Repetição em Tandem , Técnicas do Sistema de Duplo-Híbrido , Zea mays/metabolismoRESUMO
Paramutation is the epigenetic transfer of information between alleles that leads to the heritable change of expression of one allele. Paramutation at the b1 locus in maize requires seven noncoding tandem repeat (b1TR) sequences located approximately 100 kb upstream of the transcription start site of b1, and mutations in several genes required for paramutation implicate an RNA-mediated mechanism. The mediator of paramutation (mop1) gene, which encodes a protein closely related to RNA-dependent RNA polymerases, is absolutely required for paramutation. Herein, we investigate the potential function of mop1 and the siRNAs that are produced from the b1TR sequences. Production of siRNAs from the b1TR sequences depends on a functional mop1 gene, but transcription of the repeats is not dependent on mop1. Further nuclear transcription assays suggest that the b1TR sequences are likely transcribed predominantly by RNA polymerase II. To address whether production of b1TR-siRNAs correlated with paramutation, we examined siRNA production in alleles that cannot undergo paramutation. Alleles that cannot participate in paramutation also produce b1TR-siRNAs, suggesting that b1TR-siRNAs are not sufficient for paramutation in the tissues analyzed. However, when b1TR-siRNAs are produced from a transgene expressing a hairpin RNA, b1 paramutation can be recapitulated. We hypothesize that either the b1TR-siRNAs or the dsRNA template mediates the trans-communication between the alleles that establishes paramutation. In addition, we uncovered a role for mop1 in the biogenesis of a subset of microRNAs (miRNAs) and show that it functions at the level of production of the primary miRNA transcripts.
Assuntos
Loci Gênicos/genética , Mutação/genética , RNA de Plantas/metabolismo , Zea mays/genética , Alelos , Sequência de Bases , RNA Polimerases Dirigidas por DNA/metabolismo , MicroRNAs/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA de Cadeia Dupla/biossíntese , RNA Interferente Pequeno/biossíntese , Sequências de Repetição em Tandem/genética , Transcrição Gênica , Transgenes/genéticaRESUMO
Paramutation is an allele-dependent transfer of epigenetic information, which results in the heritable silencing of one allele by another. Paramutation at the b1 locus in maize is mediated by unique tandem repeats that communicate in trans to establish and maintain meiotically heritable transcriptional silencing. The mop1 (mediator of paramutation1) gene is required for paramutation, and mop1 mutations reactivate silenced Mutator elements. Plants carrying mutations in the mop1 gene also stochastically exhibit pleiotropic developmental phenotypes. Here we report the map-based cloning of mop1, an RNA-dependent RNA polymerase gene (RDRP), most similar to the RDRP in plants that is associated with the production of short interfering RNA (siRNA) targeting chromatin. Nuclear run-on assays reveal that the tandem repeats required for b1 paramutation are transcribed from both strands, but siRNAs were not detected. We propose that the mop1 RDRP is required to maintain a threshold level of repeat RNA, which functions in trans to establish and maintain the heritable chromatin states associated with paramutation.
Assuntos
Mutagênese/genética , Mutação/genética , RNA Polimerase Dependente de RNA/metabolismo , Zea mays/enzimologia , Zea mays/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Sequências de Repetição em Tandem/genética , Transcrição Gênica/genéticaRESUMO
Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V-like complexes could provide maize with a greater diversification of RNA-mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state-a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV-like) and potentially processes downstream (Pol-V-like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2-1 dominance: complexes containing Mop2-1 subunits are non-functional and compete with wild-type complexes.
Assuntos
RNA Polimerases Dirigidas por DNA/genética , Inativação Gênica , Genes Dominantes/genética , Mutação/genética , Subunidades Proteicas/genética , RNA Interferente Pequeno/metabolismo , Zea mays/enzimologia , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Pareamento de Bases , Sequência Conservada , RNA Polimerases Dirigidas por DNA/química , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Loci Gênicos/genética , Heterozigoto , Homozigoto , Dados de Sequência Molecular , Fenótipo , Regiões Promotoras Genéticas/genética , Subunidades Proteicas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie , Sequências de Repetição em Tandem/genética , Transcrição Gênica , Transgenes/genética , Zea mays/genética , Zea mays/crescimento & desenvolvimentoRESUMO
Small RNAs from plants are known to be highly complex and abundant, with this complexity proportional to genome size. Most endogenous siRNAs in Arabidopsis are dependent on RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) for their biogenesis. Recent work has demonstrated that the maize MEDIATOR OF PARAMUTATION1 (mop1) gene is a predicted ortholog of RDR2. The mop1 gene is required for establishment of paramutation and maintenance of transcriptional silencing of transposons and transgenes, suggesting the potential involvement of small RNAs. We analyzed small RNAs in wild-type maize and in the isogenic mop1-1 loss-of-function mutant by using Illumina's sequencing-by-synthesis (SBS) technology, which allowed us to characterize the complement of maize small RNAs to considerable depth. Similar to rdr2 in Arabidopsis, in mop1-1, the 24-nucleotide (nt) endogenous heterochromatic short-interfering siRNAs were dramatically reduced, resulting in an enrichment of miRNAs and transacting siRNAs. In contrast to the Arabidopsis rdr2 mutant, the mop1-1 plants retained a highly abundant heterochromatic approximately 22-nt class of small RNAs, suggesting a second mechanism for heterochromatic siRNA production. The enrichment of miRNAs and loss of 24-nt heterochromatic siRNAs in mop1-1 should be advantageous for miRNA discovery as the maize genome becomes more fully sequenced.
Assuntos
Proteínas de Plantas/fisiologia , RNA Interferente Pequeno/biossíntese , Zea mays/genética , Zea mays/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Proteínas de Plantas/genética , RNA Polimerase Dependente de RNA/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodosRESUMO
Paramutation is the ability of an endogenous gene or a transgene to heritably silence another closely related allele or gene. At the maize p1 (pericarp color1) gene, paramutation is associated with decreases in transcript levels and reduced pigmentation of the endogenous allele that normally specifies red seed coat (pericarp) and cob pigmentation. Herein we demonstrate that this silencing occurs at the transcriptional level and that a specific enhancer fragment from p1 is sufficient to induce all aspects of paramutation. Further, we demonstrate that a mutation in the mop1 gene (mediator of paramutation1), which encodes a RNA-dependent RNA polymerase, is absolutely required for establishing the silencing associated with p1 paramutation. In contrast to its effects on other paramutation loci, the mop1 mutation does not immediately reactivate a previously silenced allele; several generations in the presence of the mop1 mutation are required. In addition, the mop1 mutation was also able to release tissue-specific silencing of another p1 allele that does not participate in paramutation, but does contain a tandem repeated structure and is likely regulated through epigenetic mechanisms. These results demonstrate that RNA-mediated gene-silencing mechanisms play key roles in p1 paramutation and the spectrum of roles for MOP1 is broadened to include tissue-specific expression patterns.
Assuntos
Elementos Facilitadores Genéticos/genética , Inativação Gênica , Genes de Plantas/genética , Mutação , RNA Polimerase Dependente de RNA/metabolismo , Transcrição Gênica , Zea mays/genética , Alelos , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Modelos Genéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Polimerase Dependente de RNA/genéticaRESUMO
Using the compiled human genome sequence, we systematically cataloged all tandem repeats with periods between 20 and 2000 bp and defined two subsets whose consensus sequences were found at either single-locus tandem repeats (slTRs) or multilocus tandem repeats (mlTRs). Parameters compiled for these subsets provide insights into mechanisms underlying the creation and evolution of tandem repeats. Both subsets of tandem repeats are nonrandomly distributed in the genome, being found at higher frequency at many but not all chromosome ends and internal clusters of mlTRs were also observed. Despite the integral role of recombination in the biology of tandem repeats, recombination hotspots colocalized only with shorter microsatellites and not the longer repeats examined here. An increased frequency of slTRs was observed near imprinted genes, consistent with a functional role, while both slTRs and mlTRs were found more frequently near genes implicated in triplet expansion diseases, suggesting a general instability of these regions. Using our collated parameters, we identified 2230 slTRs as candidates for highly informative molecular markers.
Assuntos
Sequências de Repetição em Tandem/genética , Cromossomos Humanos/genética , Variação Genética , Humanos , Recombinação Genética/genéticaRESUMO
BACKGROUND: Heterosis is the superior performance of F1 hybrid progeny relative to the parental phenotypes. Maize exhibits heterosis for a wide range of traits, however the magnitude of heterosis is highly variable depending on the choice of parents and the trait(s) measured. We have used expression profiling to determine whether the level, or types, of non-additive gene expression vary in maize hybrids with different levels of genetic diversity or heterosis. RESULTS: We observed that the distributions of better parent heterosis among a series of 25 maize hybrids generally do not exhibit significant correlations between different traits. Expression profiling analyses for six of these hybrids, chosen to represent diversity in genotypes and heterosis responses, revealed a correlation between genetic diversity and transcriptional variation. The majority of differentially expressed genes in each of the six different hybrids exhibited additive expression patterns, and approximately 25% exhibited statistically significant non-additive expression profiles. Among the non-additive profiles, approximately 80% exhibited hybrid expression levels between the parental levels, approximately 20% exhibited hybrid expression levels at the parental levels and ~1% exhibited hybrid levels outside the parental range. CONCLUSION: We have found that maize inbred genetic diversity is correlated with transcriptional variation. However, sampling of seedling tissues indicated that the frequencies of additive and non-additive expression patterns are very similar across a range of hybrid lines. These findings suggest that heterosis is probably not a consequence of higher levels of additive or non-additive expression, but may be related to transcriptional variation between parents. The lack of correlation between better parent heterosis levels for different traits suggests that transcriptional diversity at specific sets of genes may influence heterosis for different traits.
Assuntos
Perfilação da Expressão Gênica , Vigor Híbrido/genética , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Endogamia , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Plants with mutations in one of three maize genes, mop1, rmr1, and rmr2, are defective in paramutation, an allele-specific interaction that leads to meiotically heritable chromatin changes. Experiments reported here demonstrate that these genes are required to maintain the transcriptional silencing of two different transgenes, suggesting that paramutation and transcriptional silencing of transgenes share mechanisms. We hypothesize that the transgenes are silenced through an RNA-directed chromatin mechanism, because mop1 encodes an RNA-dependent RNA polymerase. In all the mutants, DNA methylation was reduced in the active transgenes relative to the silent transgenes at all of the CNG sites monitored within the transgene promoter. However, asymmetrical methylation persisted at one site within the reactivated transgene in the rmr1-1 mutant. With that one mutant, rmr1-1, the transgene was efficiently resilenced upon outcrossing to reintroduce the wild-type protein. In contrast, with the mop1-1 and rmr2-1 mutants, the transgene remained active in a subset of progeny even after the wild-type proteins were reintroduced by outcrossing. Interestingly, this immunity to silencing increased as the generations progressed, consistent with a heritable chromatin state being formed at the transgene in plants carrying the mop1-1 and rmr2-1 mutations that becomes more resistant to silencing in subsequent generations.
Assuntos
Inativação Gênica , Mutação , Transcrição Gênica , Transgenes , Zea mays/genética , Cruzamentos Genéticos , Metilação de DNA , Modelos Genéticos , Zea mays/crescimento & desenvolvimentoRESUMO
RNA interference (RNAi) is a powerful tool for functional genomics in a number of species. The logistics and procedures for doing high-throughput RNAi to investigate the functions of large numbers of genes in Arabidopsis thaliana and in Zea mays are described. Publicly available plasmid vectors that facilitate the stable chromosomal integration of inverted repeat transgenes that trigger RNAi have been used to generate more than 50 independent transgenic lines each in Arabidopsis and maize. Analysis of mRNA abundance of the targeted genes in independent lines transformed with distinct constructs indicates that the success of RNAi-induced silencing is gene dependent. mRNA levels were not detectably reduced for some genes, but were dramatically reduced for a number of genes targeted. A common pattern was that multiple independent lines transgenic for the same construct showed the same extent of silencing. This chapter describes the procedures used to generate and test transgenic lines mediating RNAi in Arabidopsis and maize.
Assuntos
Arabidopsis/genética , Genoma de Planta , Genômica , Interferência de RNA , Transgenes , Zea mays/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Paramutation is an interaction between alleles that leads to a heritable change in the expression of one allele. In B'/B-I plants, B-I (high transcription) always changes to B' (low transcription). The new B' allele retains the low expression state in the next generation and paramutates B-I at a frequency of 100%. Comparisons of the structure and expression of B' with that of a closely related allele that does not participate in paramutation demonstrated that transcription from the same promoter-proximal sequences is not sufficient for paramutation. Fine-structure recombination mapping localized sequences required for B' expression and paramutation. The entire 110 kb upstream of the B' transcription start site was cloned and sequenced and the recombination breakpoints were determined for 12 recombinant alleles. Sequences required for expression and paramutation mapped to distinct regions, 8.5-49 kb and 93-106 kb upstream of the B' transcription start site, respectively. Sequencing and DNA blot analyses indicate that the B' region required for paramutation is mostly unique or low copy in the maize genome. These results represent the first example of long-distance regulatory elements in plants and demonstrate that paramutation is mediated by long-distance cis and trans interactions.
Assuntos
Genes Reguladores , Transcrição Gênica/genética , Zea mays/genética , Mapeamento Cromossômico , Mutação , Polimorfismo Genético , Recombinação GenéticaRESUMO
Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yields at least two subtypes of Pol IV and three subtypes of Pol V in maize. Pol IV/Pol V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a, and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Zea mays/metabolismo , Domínio Catalítico , Filogenia , Plantas Geneticamente Modificadas/metabolismo , Transcrição GênicaRESUMO
Short Interspersed Nuclear Elements (SINEs) are non-autonomous retrotransposons that comprise a large fraction of the human genome. SINEs are demethylated in human disease, but whether SINEs become transcriptionally induced and how the resulting transcripts may affect the expression of protein coding genes is unknown. Here, we show that downregulation of the mRNA of the tumor suppressor gene BRCA1 is associated with increased transcription of SINEs and production of sense and antisense SINE small RNAs. We find that BRCA1 mRNA is post-transcriptionally down-regulated in a Dicer and Drosha dependent manner and that expression of a SINE inverted repeat with sequence identity to a BRCA1 intron is sufficient for downregulation of BRCA1 mRNA. These observations suggest that transcriptional activation of SINEs could contribute to a novel mechanism of RNA mediated post-transcriptional silencing of human genes.
RESUMO
Paramutation refers to the process by which homologous DNA sequences communicate in trans to establish meiotically heritable expression states. Although mechanisms are unknown, current data are consistent with the hypothesis that the establishment and heritable transmission of specific chromatin states underlies paramutation. Transcribed, noncoding tandem repeats and proteins implicated in RNA-directed transcriptional silencing in plants and yeast are required for paramutation, yet the specific molecules mediating heritable silencing remain to be determined.