Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nano Lett ; 23(1): 380-388, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36382909

RESUMO

Glide-mirror symmetry in nonsymmorphic crystals can foster the emergence of novel hourglass nodal loop states. Here, we present spectroscopic signatures from angle-resolved photoemission of a predicted topological hourglass semimetal phase in Nb3SiTe6. Linear band crossings are observed at the zone boundary of Nb3SiTe6, which could be the origin of the nontrivial Berry phase and are consistent with a predicted glide quantum spin Hall effect; such linear band crossings connect to form a nodal loop. Furthermore, the saddle-like Fermi surface of Nb3SiTe6 observed in our results helps unveil linear band crossings that could be missed. In situ alkali-metal doping of Nb3SiTe6 also facilitated the observation of other band crossings and parabolic bands at the zone center correlated with accidental nodal loop states. Overall, our results complete the system's band structure, help explain prior Hall measurements, and suggest the existence of a nodal loop at the zone center of Nb3SiTe6.

2.
Nano Lett ; 17(2): 1154-1160, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094957

RESUMO

The presence of the PbI2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH3NH3PbI3 perovskite crystals and PbI2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.


Assuntos
Compostos de Cálcio , Chumbo/química , Imagem Óptica/métodos , Óxidos , Energia Solar , Titânio , Eletrônica , Ouro/química , Iluminação/métodos , Microscopia de Tunelamento/instrumentação , Propriedades de Superfície
3.
Nanotechnology ; 28(25): 255301, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28548051

RESUMO

Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ∼150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

4.
Nanotechnology ; 28(9): 095706, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28135205

RESUMO

We elucidate that the tip sharpness in scanning tunneling microscopy (STM) can be characterized through the number of field-emission (FE) resonances. A higher number of FE resonances indicates higher sharpness. We observe empty quantum well (QW) states in Pb islands on Cu(111) under different tip sharpness levels. We found that QW states observed by sharper tips always had lower energies, revealing negative energy shifts. This sharpness-induced energy shift originates from an inhomogeneous electric field in the STM gap. An increase in sharpness increases the electric field inhomogeneity, that is, enhances the electric field near the tip apex, but weakens the electric field near the sample. As a result, higher sharpness can increase the electronic phase in vacuum, causing the lowering of QW state energies. Moreover, the behaviors of negative energy shift as a function of state energy are entirely different for Pb islands with a thickness of two and nine atomic layers. This thickness-dependent behavior results from the electrostatic force in the STM gap decreasing with increasing tip sharpness. The variation of the phase contributed from the expansion deformation induced by the electrostatic force in a nine-layer Pb island is significantly greater, sufficient to effectively negate the increase of electronic phase in vacuum.

5.
Nano Lett ; 16(7): 4490-500, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27351447

RESUMO

Dopants play a critical role in modulating the electric properties of semiconducting materials, ranging from bulk to nanoscale semiconductors, nanowires, and quantum dots. The application of traditional doping methods developed for bulk materials involves additional considerations for nanoscale semiconductors because of the influence of surfaces and stochastic fluctuations, which may become significant at the nanometer-scale level. Monolayer doping is an ex situ doping method that permits the post growth doping of nanowires. Herein, using atom-probe tomography (APT) with subnanometer spatial resolution and atomic-ppm detection limit, we study the distributions of boron and phosphorus in ex situ doped silicon nanowires with accurate control. A highly phosphorus doped outer region and a uniformly boron doped interior are observed, which are not predicted by criteria based on bulk silicon. These phenomena are explained by fast interfacial diffusion of phosphorus and enhanced bulk diffusion of boron, respectively. The APT results are compared with scanning tunneling spectroscopy data, which yields information concerning the electrically active dopants. Overall, comparing the information obtained by the two methods permits us to evaluate the diffusivities of each different dopant type at the nanowire oxide, interface, and core regions. The combined data sets permit us to evaluate the electrical activation and compensation of the dopants in different regions of the nanowires and understand the details that lead to the sharp p-i-n junctions formed across the nanowire for the ex situ doping process.

6.
Nanotechnology ; 27(17): 175705, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26983371

RESUMO

Field emission (FE) resonance (or Gundlach oscillation) in scanning tunneling microscopy (STM) is a phenomenon in which the FE electrons emitted from the microscope tip couple into the quantized standing-wave states within the STM tunneling gap. Although the occurrence of FE resonance peaks can be semi-quantitatively described using the triangular potential well model, it cannot explain the experimental observation that the number of resonance peaks may change under the same emission current. This study demonstrates that the aforementioned variation can be adequately explained by introducing a field enhancement factor that is related to the local electric field at the tip apex. The peak number of FE resonances increases with the field enhancement factor. The peak intensity of the FE resonance on the reconstructed Au(111) surface varies in the face-center cubic, hexagonal-close-packed, and ridge regions, thus providing the contrast in the mapping through FE resonances. The mapping contrast is demonstrated to be nearly independent of the tip-sample distance, implying that the FE electron beam is not divergent because of a self-focus function intrinsically involved in the STM configuration.

7.
Nanotechnology ; 26(5): 055705, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25590566

RESUMO

Focused ion beam (FIB) deposition produces unwanted particle contamination beyond the deposition point. This is due to the FIB having a Gaussian distribution. This work investigates the spatial extent of this contamination and its influence on the electrical properties of nano-electronic devices. A correlation study is performed on carbon-nanotube (CNT) devices manufactured using FIB deposition. The devices are observed using transmission electron microscopy (TEM) and these images are correlated with device electrical characteristics. To discover how far Pt-nanoparticle contamination occurs along a CNT after FIB electrical contact deposition careful TEM inspections are performed. The results show FIB deposition efficiently improves electrical contact; however, the practice is accompanied by serious particle contamination near deposition points. These contaminants include metal particles and amorphous elements originating from precursor gases and residual water molecules in the vacuum chamber. Pt-contamination extends for approximately 2 µm from the point of FIB contact deposition. These contaminants cause current fluctuations and alter the transport characteristics of devices. It is recommended that nano-device fabrication occurs at a distance greater than 2 µm from the FIB deposition of an electrical contact.

8.
Nanotechnology ; 25(25): 255703, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24896069

RESUMO

We demonstrate that the Raman intensities of G and 2D bands of a suspended graphene can be enhanced using a gold tip with an apex size of 2.3 µm. The enhancement decays with the tip-graphene distance exponentially and remains detectable at a distance of 1.5 µm. Raman mappings show that the enhanced area is comparable to the apex size. Application of a bias voltage to the tip can attract the graphene so that Raman signals are intensified. The exponential enhancement-distance relationship enables the measurement of the graphene deformation, and the Young's modulus of graphene is estimated to be 1.48 TPa.

9.
J Chem Phys ; 141(11): 114701, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25240362

RESUMO

Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112̄] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11̄0) plane of the bulk crystalline picene. Between the molecules and the substrate, the van der Waals interaction is dominant with negligible hybridization between their electronic states; a conclusion that contrasts with the chemisorption exhibited by pentacene molecules on the same substrate. We also observed a monolayer picene thin film in which all molecules were standing to form an intermolecular π stacking. Two-dimensional delocalized electronic states are found on the K-deposited π stacking structure.

10.
Nano Lett ; 13(4): 1852-7, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23506011

RESUMO

Recently, monolayers of layered transition metal dichalcogenides (LTMD), such as MX2 (M = Mo, W and X = S, Se), have been reported to exhibit significant spin-valley coupling and optoelectronic performances because of the unique structural symmetry and band structures. Monolayers in this class of materials offered a burgeoning field in fundamental physics, energy harvesting, electronics, and optoelectronics. However, most studies to date are hindered by great challenges on the synthesis and transfer of high-quality LTMD monolayers. Hence, a feasible synthetic process to overcome the challenges is essential. Here, we demonstrate the growth of high-quality MS2 (M = Mo, W) monolayers using ambient-pressure chemical vapor deposition (APCVD) with the seeding of perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS). The growth of a MS2 monolayer is achieved on various surfaces with a significant flexibility to surface corrugation. Electronic transport and optical performances of the as-grown MS2 monolayers are comparable to those of exfoliated MS2 monolayers. We also demonstrate a robust technique in transferring the MS2 monolayer samples to diverse surfaces, which may stimulate the progress on the class of materials and open a new route toward the synthesis of various novel hybrid structures with LTMD monolayer and functional materials.


Assuntos
Dissulfetos/química , Metais/química , Nanotecnologia , Eletrônica , Perileno/química , Propriedades de Superfície
11.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426899

RESUMO

A spectroscopic imaging-scanning tunneling microscope (SI-STM) allows for the atomic scale visualization of the surface electronic and magnetic structure of novel quantum materials with a high energy resolution. To achieve the optimal performance, a low vibration facility is required. Here, we describe the design and performance of an ultrahigh vacuum STM system supported by a hybrid vibration isolation system that consists of a pneumatic passive and a piezoelectric active vibration isolation stage. We present the detailed vibrational noise analysis of the hybrid vibration isolation system, which shows that the vibration level can be suppressed below 10-8 m/sec/√Hz for most frequencies up to 100 Hz. Combined with a rigid STM design, vibrational noise can be successfully removed from the tunneling current. We demonstrate the performance of our STM system by taking high resolution spectroscopic maps and topographic images on several quantum materials. Our results establish a new strategy to achieve an effective vibration isolation system for high-resolution STM and other scanning probe microscopies to investigate the nanoscale quantum phenomena.

12.
Nanotechnology ; 24(30): 305702, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23807471

RESUMO

In this work, we present a design based on Lorentz force induction to excite pure torsional resonances of different types of cantilevers in air as well as in water. To demonstrate the atomic force microscopy imaging capability, the phase-modulation torsional resonance mode is employed to resolve fine features of purple membranes in a buffer solution. Most importantly, force-versus-distance curves using a relatively stiff cantilever can clearly detect the characteristic oscillatory profiles of hydration layers at a water-mica interface, indicating the high force sensitivity of the torsional mode. The high resonance frequencies and high quality-factors for the torsional mode may be of great potential for high-speed and high-sensitivity imaging in aqueous environment.

13.
Nano Lett ; 12(3): 1538-44, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22369470

RESUMO

The two-dimensional layer of molybdenum disulfide (MoS(2)) has recently attracted much interest due to its direct-gap property and potential applications in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS(2) atomic thin layers is still rare. Here we report that the high-temperature annealing of a thermally decomposed ammonium thiomolybdate layer in the presence of sulfur can produce large-area MoS(2) thin layers with superior electrical performance on insulating substrates. Spectroscopic and microscopic results reveal that the synthesized MoS(2) sheets are highly crystalline. The electron mobility of the bottom-gate transistor devices made of the synthesized MoS(2) layer is comparable with those of the micromechanically exfoliated thin sheets from MoS(2) crystals. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS(2) films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.


Assuntos
Cristalização/métodos , Membranas Artificiais , Molibdênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Sulfetos/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
14.
Nanoscale ; 15(7): 3169-3176, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36651904

RESUMO

InSe layered semiconductors with high mobility have advantages over transition-metal dichalcogenides in certain device applications. Understanding the dynamics of carriers, especially around the major bandgaps, is not only of fundamental interest but also important for improving the performance of devices. We investigated ultrafast carrier dynamics in exfoliated InSe near the bandgap and found that the presence of photocarriers led to shrinkage in the optical bandgap. In addition, we observed that the carrier recombination rate increased when the thickness of the InSe nanoflakes was reduced and the process was dominated by surface recombination. For the same flakes, the recombination rate became lower after the freshly exfoliated InSe was exposed to air and oxidized. Using a free carrier diffusion model, layer-dependent surface recombination velocities were obtained. Our investigation reveals that the surface condition and the thickness of few-layer InSe play important roles in carrier lifetimes.

15.
Opt Express ; 20(10): 11445-50, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565764

RESUMO

In this work, long working distance fluorescence lifetime imaging is realized with stimulated emission in combination with electronic time delay control. Spatial coherence, as a result of stimulated emission, supports unattenuated fluorescence detection at extended distance, using low NA optics. An electronic time delayed trigger provides an advantageous way in adjusting the pulse separation and probing the fluorescence lifetime in the nanosecond ranges. The fluorescence lifetime of selected fluorophores is accurately determined through the pump-probe configuration. The characteristics and applications in fluorescence lifetime measurement of stimulated emission are investigated and summarized succinctly here.


Assuntos
Óptica e Fotônica , Espectrometria de Fluorescência/métodos , Simulação por Computador , Eletrônica , Desenho de Equipamento , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Luz , Fotoquímica/métodos , Semicondutores , Fatores de Tempo
16.
Phys Rev Lett ; 109(24): 246807, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368366

RESUMO

In this study, direct observation of the evolution of electronic structures across complex oxide interfaces has been revealed in the LaAlO(3)/SrTiO(3) model system using cross-sectional scanning tunneling microscopy and spectroscopy. The conduction and valence band structures across the LaAlO(3)/SrTiO(3) interface are spatially resolved at the atomic level by measuring the local density of states. This study directly maps out the electronic reconstructions and a built-in electric field in the polar LaAlO(3) layer. Results also clearly reveal the band bending and the notched band structure in the SrTiO(3) adjacent to the interface.

17.
Nat Commun ; 12(1): 3893, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162864

RESUMO

High-temperature superconductive (SC) cuprates exhibit not only a SC phase, but also competing orders, suppressing superconductivity. Charge order (CO) has been recognized as an important competing order, but its microscopic spatial interplay with SC phase as well as the interlayer coupling in CO and SC phases remain elusive, despite being essential for understanding the physical mechanisms of competing orders and hence superconductivity. Here we report the achievement of direct real-space imaging with atomic-scale resolution of cryogenically cleaved YBa2Cu3O6.81 using cross-sectional scanning tunneling microscopy/spectroscopy. CO nanodomains are found embedded in the SC phase with a proximity-like boundary region characterized by mutual suppression of CO and superconductivity. Furthermore, SC coherence as well as CO occur on both CuO chain and plane layers, revealing carrier transport and density of states mixing between layers. The CO antiphase correlation along the c direction suggests a dominance of Coulomb repulsion over Josephson tunneling between adjacent layers.

18.
Nanotechnology ; 21(5): 055702, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20023321

RESUMO

In this study, we demonstrate a high-resolution friction profiling technique using synchronous atomic/lateral force microscopy (AFM/LFM). The atomic resolution is achieved by our special carbon nanotube (CNT) probes made via in situ tailoring and manipulation inside an ultra-high vacuum transmission electron microscope (UHV TEM). The frictional pattern mapped on graphite displays a periodic distribution similar to the atomic (0001)-oriented graphite lattice structure. Furthermore, the electrothermal process in the UHV TEM renders a graphite-capped CNT tip, which delivers the nanotribology study within two graphite layers by the LFM measurement on graphite. The synchronous AFM and LFM images can discern a spatial shift between the atomic points and local friction maxima. We further interpret this shift as caused by the lattice distortion, which in turn induces irreversible energy dissipation. We believe this is the origin of atomic friction on the sub-nanonewton scale.

19.
Nanoscale Adv ; 2(12): 5848-5856, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133857

RESUMO

We demonstrate that the linewidth of the field emission resonance (FER) observed on the surface of MoS2 using scanning tunneling microscopy can vary by up to one order of magnitude with an increasing electric field. This phenomenon originates from quantum trapping, in which the electron relaxed from a resonant electron in the FER is momentarily trapped in a potential well on the MoS2 surface due to its wave nature. Because the relaxed electron and the resonant electron have the same spin, through the action of the Pauli exclusion principle, the lifetimes of the resonant electrons can be substantially prolonged when the relaxed electrons engage in resonance trapping. The linewidth of the FER is thus considerably reduced to as narrow as 12 meV. The coexistence of the resonant electron and the relaxed electron requires the emission of two electrons, which can occur through the exchange interaction.

20.
Phys Rev Lett ; 103(26): 264301, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20366314

RESUMO

We report a direct determination of the specular scattering probability of acoustic phonons at a crystal boundary by observing the escape of incident coherent phonons from the coherent state during reflection. In the sub-THz frequency range where the phonon wavelength is much longer than the lattice constant, the acoustic phonon-interface interaction is found to agree well with the macroscopic theory on wave scattering from rough surfaces. This examination thus quantitatively verifies the dominant role of atomic-scale corrugations in the Kapitza anomaly observed at 1-10 K and further opens a new path to nondestructively estimate subnanoscale roughness of buried interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA