Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biol Reprod ; 108(5): 802-813, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36790125

RESUMO

Some transmasculine individuals may be interested in pausing gender-affirming testosterone therapy and carrying a pregnancy. The ovarian impact of taking and pausing testosterone is not completely understood. The objective of this study was to utilize a mouse model mimicking transmasculine testosterone therapy to characterize the ovarian dynamics following testosterone cessation. We injected postpubertal 9-10-week-old female C57BL/6N mice once weekly with 0.9 mg of testosterone enanthate or a vehicle control for 6 weeks. All testosterone-treated mice stopped cycling and demonstrated persistent diestrus within 1 week of starting testosterone, while control mice cycled regularly. After 6 weeks of testosterone therapy, one group of testosterone-treated mice and age-matched vehicle-treated diestrus controls were sacrificed. Another group of testosterone-treated mice were maintained after stopping testosterone therapy and were sacrificed in diestrus four cycles after the resumption of cyclicity along with age-matched vehicle-treated controls. Ovarian histological analysis revealed stromal changes with clusters of large round cells in the post testosterone group as compared to both age-matched controls and mice at 6 weeks on testosterone. These clusters exhibited periodic acid-Schiff staining, which has been previously reported in multinucleated macrophages in aging mouse ovaries. Notably, many of these cells also demonstrated positive staining for macrophage markers CD68 and CD11b. Ovarian ribonucleic acid-sequencing found upregulation of immune pathways post testosterone as compared to age-matched controls and ovaries at 6 weeks on testosterone. Although functional significance remains unknown, further attention to the ovarian stroma may be relevant for transmasculine people interested in pausing testosterone to carry a pregnancy.


Assuntos
Ovário , Pessoas Transgênero , Gravidez , Feminino , Camundongos , Animais , Humanos , Ovário/metabolismo , Camundongos Endogâmicos C57BL , Testosterona/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos
2.
Hum Reprod ; 38(2): 256-265, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484619

RESUMO

STUDY QUESTION: Can mice serve as a translational model to examine the reproductive consequences of pubertal suppression with GnRH agonist (GnRHa) followed by testosterone (T) administration, a typical therapy in peripubertal transmasculine youth? SUMMARY ANSWER: An implanted depot with 3.6 mg of GnRHa followed by T enanthate at 0.45 mg weekly can be used in peripubertal female mice for investigating the impact of gender-affirming hormone therapy in transmasculine youth. WHAT IS KNOWN ALREADY: There is limited knowledge available in transgender medicine to provide evidence-based fertility care, with the current guidelines being based on the assumption of fertility loss. We recently successfully developed a mouse model to investigate the reproductive consequences of T therapy given to transgender men. On the other hand, to our knowledge, there is no mouse model to assess the reproductive outcomes in peripubertal transmasculine youth. STUDY DESIGN, SIZE, DURATION: A total of 80 C57BL/6N female mice were used in this study, with n = 7 mice in each experimental group. PARTICIPANTS/MATERIALS, SETTING, METHODS: We first assessed the effectiveness of GnRHa in arresting pubertal development in the female mice. In this experiment, 26-day-old female mice were subcutaneously implanted with a GnRHa (3.6 mg) depot. Controls underwent a sham surgery. Animals were euthanized at 3, 9, 21 and 28 days after the day of surgery. In the second experiment, we induced a transmasculine youth mouse model. C57BL/6N female mice were subcutaneously implanted with a 3.6 mg GnRHa depot on postnatal day 26 for 21 days and this was followed by weekly injections of 0.45 mg T enanthate for 6 weeks. The control for the GnRH treatment was sham surgery and the control for T treatment was sesame oil vehicle injections. Animals were sacrificed 0.5 weeks after the last injection. The data collected included the day of the vaginal opening and first estrus, daily vaginal cytology, weekly and terminal reproductive hormones levels, body/organ weights, ovarian follicular distribution and corpora lutea (CL) counts. MAIN RESULTS AND THE ROLE OF CHANCE: GnRHa implanted animals remained in persistent diestrus and had reduced levels of FSH (P = 0.0013), LH (P = 0.0082) and estradiol (P = 0.0155), decreased uterine (P < 0.0001) and ovarian weights (P = 0.0002), and a lack of CL at 21 days after GnRHa implantation. T-only and GnRHa+T-treated animals were acyclic throughout the treatment period, had sustained elevated levels of T, suppressed LH levels (P < 0.0001), and an absence of CL compared to controls (P < 0.0001). Paired ovarian weights were reduced in the T-only and GnRHa+T groups compared with the control and GnRHa-only groups. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Although it is an appropriate tool to provide relevant findings, precaution is needed to extrapolate mouse model results to mirror human reproductive physiology. WIDER IMPLICATIONS OF THE FINDINGS: To our knowledge, this study describes the first mouse model mimicking gender-affirming hormone therapy in peripubertal transmasculine youth. This model provides a tool for researchers studying the effects of GnRHa-T therapy on other aspects of reproduction, other organ systems and transgenerational effects. The model is supported by GnRHa suppressing puberty and maintaining acyclicity during T treatment, lower LH levels and absence of CL. The results also suggest GnRHa+T therapy in peripubertal female mice does not affect ovarian reserve, since the number of primordial follicles was not affected by treatment. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Michigan Institute for Clinical and Health Research grants KL2 TR 002241 and UL1 TR 002240 (C.D.C.); National Institutes of Health grants F30-HD100163 and T32-HD079342 (H.M.K.); University of Michigan Office of Research funding U058227 (A.S.); American Society for Reproductive Medicine/Society for Reproductive Endocrinology and Infertility grant (M.B.M.); and National Institutes of Health R01-HD098233 (M.B.M.). The University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core Facility was supported by the Eunice Kennedy Shriver NICHD/NIH grants P50-HD028934 and R24-HD102061. The authors declare that they have no competing interests.


Assuntos
Heptanoatos , Testosterona , Masculino , Animais , Camundongos , Humanos , Feminino , Adolescente , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Hormônio Liberador de Gonadotropina
3.
Reproduction ; 160(3): R25-R39, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32716007

RESUMO

Historically, research in ovarian biology has focused on folliculogenesis, but recently the ovarian stroma has become an exciting new frontier for research, holding critical keys to understanding complex ovarian dynamics. Ovarian follicles, which are the functional units of the ovary, comprise the ovarian parenchyma, while the ovarian stroma thus refers to the inverse or the components of the ovary that are not ovarian follicles. The ovarian stroma includes more general components such as immune cells, blood vessels, nerves, and lymphatic vessels, as well as ovary-specific components including ovarian surface epithelium, tunica albuginea, intraovarian rete ovarii, hilar cells, stem cells, and a majority of incompletely characterized stromal cells including the fibroblast-like, spindle-shaped, and interstitial cells. The stroma also includes ovarian extracellular matrix components. This review combines foundational and emerging scholarship regarding the structures and roles of the different components of the ovarian stroma in normal physiology. This is followed by a discussion of key areas for further research regarding the ovarian stroma, including elucidating theca cell origins, understanding stromal cell hormone production and responsiveness, investigating pathological conditions such as polycystic ovary syndrome (PCOS), developing artificial ovary technology, and using technological advances to further delineate the multiple stromal cell types.


Assuntos
Folículo Ovariano/citologia , Ovário/citologia , Síndrome do Ovário Policístico/fisiopatologia , Células Estromais/citologia , Células Tecais/citologia , Feminino , Humanos
4.
F S Sci ; 2(2): 116-123, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-35559746

RESUMO

OBJECTIVE: To establish if the cessation of testosterone (T) therapy reverses T-induced acyclicity in a transgender mouse model that allows for well-defined T cessation timing. DESIGN: Experimental laboratory study using a mouse model. SETTING: University-based basic science research laboratory. ANIMALS: A total of 10 C57BL/6NHsd female mice were used in this study. INTERVENTION(S): Postpubertal C57BL/6NHsd female mice were subcutaneously implanted with T enanthate (n = 5 mice) or placebo (n = 5 mice) pellets. Pellets were surgically removed after 6 weeks to ensure T cessation, after which the mice were followed for four estrous cycles after the resumption of cyclicity. MAIN OUTCOME MEASURE(S): Primary outcomes included daily vaginal cytology and weekly T levels before, during, and after T enanthate or placebo pellet implantation and removal. Secondary outcomes included ovarian follicle distribution and corpora lutea numbers, body metrics, and terminal diestrus hormone levels. RESULT(S): T-treated mice (100%) resumed cycling within one week of T pellet removal after six weeks of T therapy. T levels were significantly elevated during T therapy and decreased to control levels after surgical pellet removal. No detectable differences were observed in the follicle count, corpora lutea formation, diestrus hormone levels, or body metrics after four estrous cycles, with the exception of persistent increased clitoral area between T-treated mice and controls. One T-treated mouse was sacrificed early due to vaginal prolapse and not included in subsequent analyses. CONCLUSION(S): Our results demonstrated a close temporal relationship between estrous cycle return and T levels dropping to control levels following T pellet removal. The return of regular cyclic ovulatory function is also supported by the formation of corpora lutea and the lack of detectable differences in key reproductive parameters as compared to controls four cycles after T cessation. These results may be relevant to understanding the reversibility of T-induced amenorrhea and possible anovulation in transgender men interested in pausing T to pursue pregnancy or oocyte donation. Results may be limited by the duration of T treatment, lack of functional testing, and physiological differences between mice and humans.


Assuntos
Testosterona , Pessoas Transgênero , Animais , Modelos Animais de Doenças , Feminino , Heptanoatos , Camundongos , Camundongos Endogâmicos C57BL , Folículo Ovariano , Gravidez , Testosterona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA