Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2303455120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722054

RESUMO

Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Bovinos , Anticorpos , Fragmentos Fab das Imunoglobulinas/genética , Dissulfetos
2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34210738

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/uso terapêutico , Pirrolidinas/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , COVID-19/patologia , Proteases 3C de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/química , Cristalografia por Raios X , Deutério , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Pirrolidinas/química , SARS-CoV-2/enzimologia , Ácidos Sulfônicos , Transgenes
3.
Proteins ; 87(7): 579-587, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883881

RESUMO

Human noroviruses are the primary cause of outbreaks of acute gastroenteritis worldwide. The problem is further compounded by the current lack of norovirus-specific antivirals or vaccines. Noroviruses have a single-stranded, positive sense 7 to 8 kb RNA genome which encodes a polyprotein precursor that is processed by a virus-encoded 3C-like cysteine protease (NV 3CLpro) to generate at least six mature nonstructural proteins. Processing of the polyprotein is essential for virus replication, consequently, NV 3CLpro has emerged as an attractive target for the discovery of norovirus therapeutics and prophylactics. We have recently described the structure-based design of macrocyclic transition state inhibitors of NV 3CLpro. In order to gain insight and understanding into the interaction of macrocyclic inhibitors with the enzyme, as well as probe the effect of ring size on pharmacological activity and cellular permeability, additional macrocyclic inhibitors were synthesized and high resolution cocrystal structures determined. The results of our studies tentatively suggest that the macrocyclic scaffold may hamper optimal binding to the active site by impeding concerted cross-talk between the S2 and S4 subsites.


Assuntos
Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Compostos Macrocíclicos/farmacologia , Norovirus/enzimologia , Animais , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/química , Gastroenterite/tratamento farmacológico , Gastroenterite/virologia , Humanos , Compostos Macrocíclicos/química , Camundongos , Modelos Moleculares , Norovirus/química , Norovirus/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Células RAW 264.7
4.
Artigo em Inglês | MEDLINE | ID: mdl-30104275

RESUMO

Norovirus is the main cause of viral gastroenteritis worldwide. Although norovirus gastroenteritis is self-limiting in immunocompetent individuals, chronic infections with debilitating and life-threatening complications occur in immunocompromised patients. Nitazoxanide (NTZ) has been used empirically in the clinic and has demonstrated effectiveness against norovirus gastroenteritis. In this study, we aimed at uncovering the antiviral potential and mechanisms of action of NTZ and its active metabolite, tizoxanide (TIZ), using a human norovirus (HuNV) replicon. NTZ and TIZ, collectively referred to as thiazolides (TZD), potently inhibited replication of HuNV and a norovirus surrogate, feline calicivirus. Mechanistic studies revealed that TZD activated cellular antiviral response and stimulated the expression of a subset of interferon-stimulated genes (ISGs), particularly interferon regulatory factor 1 (IRF-1), not only in a Huh7 cell-based HuNV replicon, but also in naive Huh7 and Caco-2 cells and novel human intestinal organoids. Overexpression of exogenous IRF-1 inhibited HuNV replication, whereas knockdown of IRF-1 largely attenuated the antiviral activity of TZD, suggesting that IRF-1 mediated TZD inhibition of HuNV. By using a Janus kinase (JAK) inhibitor, CP-690550, and a STAT1 knockout approach, we found that TZD induced antiviral response independently of the classical JAK-signal transducers and activators of transcription (JAK-STAT) pathway. Furthermore, TZD and ribavirin synergized to inhibit HuNV replication and completely depleted the replicons from host cells after long-term treatment. In summary, our results demonstrated that TZD combated HuNV replication through activation of cellular antiviral response, in particular by inducing a prominent antiviral effector, IRF-1. NTZ monotherapy or combination with ribavirin represent promising options for treating norovirus gastroenteritis, especially in immunocompromised patients.


Assuntos
Antivirais/farmacologia , Norovirus/efeitos dos fármacos , Ribavirina/farmacologia , Tiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Células CACO-2 , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Linhagem Celular , Linhagem Celular Tumoral , Sinergismo Farmacológico , Gastroenterite/tratamento farmacológico , Gastroenterite/metabolismo , Gastroenterite/virologia , Células HEK293 , Humanos , Fator Regulador 1 de Interferon/metabolismo , Intestinos/virologia , Janus Quinases/metabolismo , Nitrocompostos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/virologia , Replicon/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo
5.
PLoS Pathog ; 12(3): e1005531, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27027316

RESUMO

Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further development for important coronaviruses in animals and humans.


Assuntos
Antivirais/farmacologia , Doenças do Gato/tratamento farmacológico , Infecções por Coronavirus/tratamento farmacológico , Coronavirus Felino/efeitos dos fármacos , Peritonite Infecciosa Felina/tratamento farmacológico , Inibidores de Proteases/farmacologia , Animais , Antivirais/síntese química , Doenças do Gato/virologia , Gatos , Infecções por Coronavirus/virologia , Peritonite Infecciosa Felina/virologia , Feminino , Masculino , Inibidores de Proteases/síntese química , Virulência , Replicação Viral/efeitos dos fármacos
7.
Vet Res ; 49(1): 92, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223898

RESUMO

Caliciviruses in the genus Sapovirus are a significant cause of viral gastroenteritis in humans and animals. However, the mechanism of their entry into cells is not well characterized. Here, we determined the entry mechanism of porcine sapovirus (PSaV) strain Cowden into permissive LLC-PK cells. The inhibition of clathrin-mediated endocytosis using chlorpromazine, siRNAs, and a dominant negative (DN) mutant blocked entry and infection of PSaV Cowden strain, confirming a role for clathrin-mediated internalization. Entry and infection were also inhibited by the cholesterol-sequestering drug methyl-ß-cyclodextrin and was restored by the addition of soluble cholesterol, indicating that cholesterol also contributes to entry and infection of this strain. Furthermore, the inhibition of dynamin GTPase activity by dynasore, siRNA depletion of dynamin II, or overexpression of a DN mutant of dynamin II reduced the entry and infection, suggesting that dynamin mediates the fission and detachment of clathrin- and cholesterol-pits for entry of this strain. In contrast, the inhibition of caveolae-mediated endocytosis using nystatin, siRNAs, or a DN mutant had no inhibitory effect on entry and infection of this strain. It was further determined that cell entry of PSaV Cowden strain required actin rearrangements for vesicle internalization, endosomal trafficking from early to late endosomes through microtubules, and late endosomal acidification for uncoating. We conclude that PSaV strain Cowden is internalized into LLC-PK cells by clathrin- and cholesterol-mediated endocytosis that requires dynamin II and actin rearrangement, and that the uncoating occurs in the acidified late endosomes after trafficking from the early endosomes through microtubules.


Assuntos
Infecções por Caliciviridae/veterinária , Colesterol/fisiologia , Clatrina/fisiologia , Dinamina II/fisiologia , Endocitose , Sapovirus/fisiologia , Doenças dos Suínos/virologia , Animais , Infecções por Caliciviridae/virologia , Gastroenterite/veterinária , Gastroenterite/virologia , Células HeLa , Humanos , Células LLC-PK1 , Suínos
8.
Artigo em Inglês | MEDLINE | ID: mdl-28807916

RESUMO

Norovirus is a major cause of acute gastroenteritis worldwide and has emerged as an important issue of chronic infection in transplantation patients. Since no approved antiviral is available, we evaluated the effects of different immunosuppressants and ribavirin on norovirus and explored their mechanisms of action by using a human norovirus (HuNV) replicon-harboring model and a surrogate murine norovirus (MNV) infectious model. The roles of the corresponding drug targets were investigated by gain- or loss-of-function approaches. We found that the calcineurin inhibitors cyclosporine (CsA) and tacrolimus (FK506) moderately inhibited HuNV replication. Gene silencing of their cellular targets, cyclophilin A, FKBP12, and calcineurin, significantly inhibited HuNV replication. A low concentration, therapeutically speaking, of mycophenolic acid (MPA), an uncompetitive IMP dehydrogenase (IMPDH) inhibitor, potently and rapidly inhibited norovirus replication and ultimately cleared HuNV replicons without inducible resistance following long-term drug exposure. Knockdown of the MPA cellular targets IMPDH1 and IMPDH2 suppressed HuNV replication. Consistent with the nucleotide-synthesizing function of IMPDH, exogenous guanosine counteracted the antinorovirus effects of MPA. Furthermore, the competitive IMPDH inhibitor ribavirin efficiently inhibited norovirus and resulted in an additive effect when combined with immunosuppressants. The results from this study demonstrate that calcineurin phosphatase activity and IMPDH guanine synthase activity are crucial in sustaining norovirus infection; thus, they can be therapeutically targeted. Our results suggest that MPA shall be preferentially considered immunosuppressive medication for transplantation patients at risk of norovirus infection, whereas ribavirin represents as a potential antiviral for both immunocompromised and immunocompetent patients with norovirus gastroenteritis.


Assuntos
Antivirais/farmacologia , Inibidores de Calcineurina/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Norovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Calcineurina/metabolismo , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Linhagem Celular , Ciclosporina/farmacologia , Humanos , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Imunossupressores/farmacologia , Ácido Micofenólico/farmacologia , Norovirus/fisiologia , Ribavirina/farmacologia , Tacrolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/metabolismo , Replicação Viral/fisiologia
9.
J Virol ; 90(3): 1345-58, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581980

RESUMO

UNLABELLED: The porcine sapovirus (SaV) (PoSaV) Cowden strain is one of only a few culturable enteric caliciviruses. Compared to the wild-type (WT) PoSaV Cowden strain, tissue culture-adapted (TC) PoSaV has two conserved amino acid substitutions in the RNA-dependent RNA polymerase (RdRp) and six in the capsid protein (VP1). By using the reverse-genetics system, we identified that 4 amino acid substitutions in VP1 (residues 178, 289, 324, and 328), but not the substitutions in the RdRp region, were critical for the cell culture adaptation of the PoSaV Cowden strain. The other two substitutions in VP1 (residues 291 and 295) reduced virus replication in vitro. Three-dimensional (3D) structural analysis of VP1 showed that residue 178 was located near the dimer-dimer interface, which may affect VP1 assembly and oligomerization; residues 289, 291, 324, and 328 were located at protruding subdomain 2 (P2) of VP1, which may influence virus binding to cellular receptors; and residue 295 was located at the interface of two monomeric VP1 proteins, which may influence VP1 dimerization. Although reversion of the mutation at residue 291 or 295 from that of the TC strain to that of the WT reduced virus replication in vitro, it enhanced virus replication in vivo, and the revertants induced higher-level serum and mucosal antibody responses than those induced by the TC PoSaV Cowden strain. Our findings reveal the molecular basis for PoSaV adaptation to cell culture. These findings may provide new, critical information for the cell culture adaptation of other PoSaV strains and human SaVs or noroviruses. IMPORTANCE: The tissue culture-adapted porcine sapovirus Cowden strain is one of only a few culturable enteric caliciviruses. We discovered that 4 amino acid substitutions in VP1 (residues 178, 289, 324, and 328) were critical for its adaptation to LLC-PK cells. Two substitutions in VP1 (residues 291 and 295) reduced virus replication in vitro but enhanced virus replication and induced higher-level serum and mucosal antibody responses in gnotobiotic pigs than those induced by the tissue culture-adapted strain. Structural modeling analysis of VP1 suggested that residue 178 may affect VP1 assembly and oligomerization; residues 289, 291, 324, and 328 may influence virus binding to cellular receptors; and residue 295 may influence VP1 dimerization. Our findings will provide new information for the cell culture adaptation of other sapoviruses and possibly noroviruses.


Assuntos
Adaptação Biológica , Sapovirus/crescimento & desenvolvimento , Inoculações Seriadas , Cultura de Vírus , Animais , Linhagem Celular , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Conformação Proteica , RNA Polimerase Dependente de RNA/genética , Genética Reversa , Sapovirus/genética , Suínos , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética
10.
BMC Vet Res ; 13(1): 356, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178878

RESUMO

BACKGROUND: Porcine Epidemic Diarrhea Virus (PEDV) is a coronavirus that infects the intestinal tract and causes diarrhea and vomiting in older pigs or extreme dehydration and death that could reach 100% mortality in neonatal piglets. In the US, the first PEDV outbreaks occurred in 2013 and since then US PEDV strains have quickly spread throughout the US and worldwide, causing significant economic and public health concerns. Currently two conditionally approved vaccines exist in the US, but there is no live attenuated vaccine, which is considered the best option in controlling PEDV by inducing transferrable mucosal immunity to susceptible neonatal piglets. In this study, we passaged an US PEDV isolate under various conditions to generate three strains and characterized their growth and antigenicity in cell culture using various assays including Western blot analysis, serum neutralization assay, sequencing analysis and confocal microscopy. Finally, these strains were evaluated for pathogenicity in nursing piglets (1-4 days old). RESULTS: One of the PEDV strains generated in this study (designated as PEDV 8aa) is able to replicate in cells without any protease and grows to a high titer of >8 log10 TCID50/ml in cell culture. Interestingly, replication of PEDV 8aa was severely reduced by trypsin and this correlated with the inhibition of virus attachment and entry into the cells. In neonatal nursing piglets, PEDV 8aa (passage number 70 or 105) was found to be fully attenuated with limited virus shedding. CONCLUSIONS: These results suggest that applying selective pressure during viral passages can facilitate attainment of viral attenuation and that PEDV 8aa warrants further investigation as an attenuated vaccine.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/virologia , Vacinas Atenuadas , Animais , Animais Recém-Nascidos , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Inoculações Seriadas , Suínos , Doenças dos Suínos/imunologia , Tripsina/efeitos dos fármacos , Células Vero , Vacinas Virais , Eliminação de Partículas Virais
11.
J Virol ; 89(9): 4942-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694593

RESUMO

UNLABELLED: Feline infectious peritonitis and virulent, systemic calicivirus infection are caused by certain types of feline coronaviruses (FCoVs) and feline caliciviruses (FCVs), respectively, and are important infectious diseases with high fatality rates in members of the Felidae family. While FCoV and FCV belong to two distinct virus families, the Coronaviridae and the Caliciviridae, respectively, they share a dependence on viral 3C-like protease (3CLpro) for their replication. Since 3CLpro is functionally and structurally conserved among these viruses and essential for viral replication, 3CLpro is considered a potential target for the design of antiviral drugs with broad-spectrum activities against these distinct and highly important viral infections. However, small-molecule inhibitors against the 3CLpro enzymes of FCoV and FCV have not been previously identified. In this study, derivatives of peptidyl compounds targeting 3CLpro were synthesized and evaluated for their activities against FCoV and FCV. The structures of compounds that showed potent dual antiviral activities with a wide margin of safety were identified and are discussed. Furthermore, the in vivo efficacy of 3CLpro inhibitors was evaluated using a mouse model of coronavirus infection. Intraperitoneal administration of two 3CLpro inhibitors in mice infected with murine hepatitis virus A59, a hepatotropic coronavirus, resulted in significant reductions in virus titers and pathological lesions in the liver compared to the findings for the controls. These results suggest that the series of 3CLpro inhibitors described here may have the potential to be further developed as therapeutic agents against these important viruses in domestic and wild cats. This study provides important insights into the structure and function relationships of 3CLpro for the design of antiviral drugs with broader antiviral activities. IMPORTANCE: Feline infectious peritonitis virus (FIPV) is the leading cause of death in young cats, and virulent, systemic feline calicivirus (vs-FCV) causes a highly fatal disease in cats for which no preventive or therapeutic measure is available. The genomes of these distinct viruses, which belong to different virus families, encode a structurally and functionally conserved 3C-like protease (3CLpro) which is a potential target for broad-spectrum antiviral drug development. However, no studies have previously reported a structural platform for the design of antiviral drugs with activities against these viruses or on the efficacy of 3CLpro inhibitors against coronavirus infection in experimental animals. In this study, we explored the structure-activity relationships of the derivatives of 3CLpro inhibitors and identified inhibitors with potent dual activities against these viruses. In addition, the efficacy of the 3CLpro inhibitors was demonstrated in mice infected with a murine coronavirus. Overall, our study provides the first insight into a structural platform for anti-FIPV and anti-FCV drug development.


Assuntos
Antivirais/isolamento & purificação , Calicivirus Felino/enzimologia , Coronavirus Felino/enzimologia , Inibidores de Proteases/isolamento & purificação , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Calicivirus Felino/efeitos dos fármacos , Gatos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/patologia , Coronavirus Felino/efeitos dos fármacos , Cisteína Endopeptidases , Modelos Animais de Doenças , Feminino , Fígado/patologia , Camundongos Endogâmicos BALB C , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Resultado do Tratamento
12.
PLoS Pathog ; 8(7): e1002783, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792064

RESUMO

Ubiquitin (Ub) is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub) cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs). However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1), a critical mediator of the unfolded protein response (UPR). WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1) through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.


Assuntos
Antivirais/farmacologia , Nitrilas/farmacologia , Norovirus/efeitos dos fármacos , Piridinas/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Linhagem Celular , Linhagem Celular Tumoral , Cianoacrilatos , Proteínas de Ligação a DNA/metabolismo , Vírus da Encefalomiocardite/efeitos dos fármacos , Vírus da Encefalomiocardite/patogenicidade , Inibidores Enzimáticos/farmacologia , Humanos , Vírus La Crosse/efeitos dos fármacos , Vírus La Crosse/patogenicidade , Macrófagos/virologia , Proteínas de Membrana/metabolismo , Camundongos , Norovirus/fisiologia , Vírus Norwalk/efeitos dos fármacos , Vírus Norwalk/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição de Fator Regulador X , Sindbis virus/efeitos dos fármacos , Sindbis virus/patogenicidade , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Replicação Viral/efeitos dos fármacos , Proteína 1 de Ligação a X-Box
13.
Microbiol Spectr ; 12(4): e0337223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466127

RESUMO

Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Sorogrupo , Febre Aftosa/tratamento farmacológico , Febre Aftosa/prevenção & controle , Endopeptidases/metabolismo , Proteases Virais 3C , Antivirais/farmacologia
14.
mBio ; 15(2): e0287823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126789

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic betacoronaviruses that continue to have a significant impact on public health. Timely development and introduction of vaccines and antivirals against SARS-CoV-2 into the clinic have substantially mitigated the burden of COVID-19. However, a limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections, respectively, calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. In this report, we examined the efficacy of two potent 3CLpro inhibitors, 5d and 11d, in fatal animal models of SARS-CoV-2 and MERS-CoV to demonstrate their broad-spectrum activity against both viral infections. These compounds significantly increased the survival of mice in both models when treatment started 1 day post infection compared to no treatment which led to 100% fatality. Especially, the treatment with compound 11d resulted in 80% and 90% survival in SARS-CoV-2 and MERS-CoV-infected mice, respectively. Amelioration of lung viral load and histopathological changes in treated mice correlated well with improved survival in both infection models. Furthermore, compound 11d exhibited significant antiviral activities in K18-hACE2 mice infected with SARS-CoV-2 Omicron subvariant XBB.1.16. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.IMPORTANCEHuman coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) continue to have a significant impact on public health. A limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. We have previously reported a series of small-molecule 3C-like protease (3CLpro) inhibitors against human coronaviruses. In this report, we demonstrated the in vivo efficacy of 3CLpro inhibitors for their broad-spectrum activity against both SARS-CoV-2 and MERS-CoV infections using the fatal animal models. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.


Assuntos
COVID-19 , Hepatite C Crônica , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Camundongos , Animais , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças
15.
J Virol ; 86(21): 11754-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915796

RESUMO

Phylogenetic analysis has demonstrated that some positive-sense RNA viruses can be classified into the picornavirus-like supercluster, which includes picornaviruses, caliciviruses, and coronaviruses. These viruses possess 3C or 3C-like proteases (3Cpro or 3CLpro, respectively), which contain a typical chymotrypsin-like fold and a catalytic triad (or dyad) with a Cys residue as a nucleophile. The conserved key sites of 3Cpro or 3CLpro may serve as attractive targets for the design of broad-spectrum antivirals for multiple viruses in the supercluster. We previously reported the structure-based design and synthesis of potent protease inhibitors of Norwalk virus (NV), a member of the Caliciviridae family. We report herein the broad-spectrum antiviral activities of three compounds possessing a common dipeptidyl residue with different warheads, i.e., an aldehyde (GC373), a bisulfite adduct (GC376), and an α-ketoamide (GC375), against viruses that belong to the supercluster. All compounds were highly effective against the majority of tested viruses, with half-maximal inhibitory concentrations in the high nanomolar or low micromolar range in enzyme- and/or cell-based assays and with high therapeutic indices. We also report the high-resolution X-ray cocrystal structures of NV 3CLpro-, poliovirus 3Cpro-, and transmissible gastroenteritis virus 3CLpro- GC376 inhibitor complexes, which show the compound covalently bound to a nucleophilic Cys residue in the catalytic site of the corresponding protease. We conclude that these compounds have the potential to be developed as antiviral therapeutics aimed at a single virus or multiple viruses in the picornavirus-like supercluster by targeting 3Cpro or 3CLpro.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Picornaviridae/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Animais , Antivirais/química , Linhagem Celular , Coronavirus/enzimologia , Cristalografia por Raios X , Cisteína Endopeptidases/química , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Modelos Moleculares , Norovirus/enzimologia , Picornaviridae/enzimologia , Inibidores de Proteases/química , Conformação Proteica , Proteínas Virais/química
16.
Bioorg Med Chem Lett ; 23(1): 62-5, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23218713

RESUMO

Noroviruses are the most common cause of acute viral gastroenteritis, accounting for >21 million cases annually in the US alone. Norovirus infections constitute an important health problem for which there are no specific antiviral therapeutics or vaccines. In this study, a series of bisulfite adducts derived from representative transition state inhibitors (dipeptidyl aldehydes and α-ketoamides) was synthesized and shown to exhibit anti-norovirus activity in a cell-based replicon system. The ED(50) of the most effective inhibitor was 60 nM. This study demonstrates for the first time the utilization of bisulfite adducts of transition state inhibitors in the inhibition of norovirus 3C-like protease in vitro and in a cell-based replicon system. The approach described herein can be extended to the synthesis of the bisulfite adducts of other classes of transition state inhibitors of serine and cysteine proteases, such as α-ketoheterocycles and α-ketoesters.


Assuntos
Antivirais/química , Norovirus/enzimologia , Peptídeo Hidrolases/química , Inibidores de Proteases/química , Sulfitos/química , Proteínas Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/metabolismo , Células CHO , Cricetinae , Cricetulus , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Ligação Proteica , Sulfitos/síntese química , Sulfitos/metabolismo , Proteínas Virais/metabolismo
17.
Bioorg Med Chem Lett ; 23(23): 6317-20, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24125888

RESUMO

A class of tripeptidyl transition state inhibitors containing a P1 glutamine surrogate, a P2 leucine, and a P3 arylalanines, was found to potently inhibit Norwalk virus replication in enzyme and cell based assays. An array of warheads, including aldehyde, α-ketoamide, bisulfite adduct, and α-hydroxyphosphonate transition state mimic, was also investigated. Tripeptidyls 2 and 6 possess antiviral activities against noroviruses, human rhinovirus, severe acute respiratory syndrome coronavirus, and coronavirus 229E, suggesting a broad range of antiviral activities.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Antivirais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Desenho de Fármacos , Glutamina/análogos & derivados , Glutamina/farmacologia , Humanos , Modelos Moleculares , Inibidores de Proteases/química , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 23(13): 3709-12, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23727045

RESUMO

The design, synthesis, and in vitro evaluation of the first macrocyclic inhibitor of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus are reported. The in vitro inhibitory activity (50% effective concentration) of the macrocyclic inhibitor toward enterovirus 3C protease (CVB3 Nancy strain), and coronavirus (SARS-CoV) and norovirus 3C-like proteases, was determined to be 1.8, 15.5 and 5.1 µM, respectively.


Assuntos
Coronavirus/enzimologia , Compostos Macrocíclicos/farmacologia , Norovirus/enzimologia , Peptídeo Hidrolases/metabolismo , Picornaviridae/enzimologia , Inibidores de Proteases/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Modelos Moleculares , Conformação Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade
20.
Anim Dis ; 3(1): 12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37128508

RESUMO

The spike protein (S) of SARS-CoV-2 is responsible for viral attachment and entry, thus a major factor for host susceptibility, tissue tropism, virulence and pathogenicity. The S is divided with S1 and S2 region, and the S1 contains the receptor-binding domain (RBD), while the S2 contains the hydrophobic fusion domain for the entry into the host cell. Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various cleavage sites. In this article, we review host proteases including furin, trypsin, transmembrane protease serine 2 (TMPRSS2) and cathepsins in the activation of SARS-CoV-2 S. Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin. The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2, and the binding triggers further conformational changes and exposure of the S2' site to proteases such as type II transmembrane serine proteases (TTPRs) including TMPRSS2. In the presence of TMPRSS2 on the target cells, SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane. In the absence of TMPRSS2, SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry. Additional host proteases involved in the cleavage of the S were discussed. This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2, and discussed the dual roles of such inhibitors in virus replication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA