Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Plant Biol ; 23(1): 144, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36922804

RESUMO

BACKGROUND: Roots are essential for plant growth and have a variety of functions, such as anchoring the plant to the ground, absorbing water and nutrients from the soil, and sensing abiotic stresses, among others. OsERF106MZ is a salinity-induced gene that is expressed in germinating seeds and rice seedling roots. However, the roles of OsERF106MZ in root growth remain poorly understood. RESULTS: Histochemical staining to examine ß-glucuronidase (GUS) activity in transgenic rice seedlings harboring OsERF106MZp::GUS indicated that OsERF106MZ is mainly expressed in the root exodermis, sclerenchyma layer, and vascular system. OsERF106MZ overexpression in rice seedlings leads to an increase in primary root (PR) length. The phytohormone abscisic acid (ABA) is thought to act as a hidden architect of root system structure. The expression of the ABA biosynthetic gene OsAO3 is downregulated in OsERF106MZ-overexpressing roots under normal conditions, while the expression of OsNPC3, an AtNPC4 homolog involved in ABA sensitivity, is reduced in OsERF106MZ-overexpressing roots under both normal and NaCl-treated conditions. Under normal conditions, OsERF106MZ-overexpressing roots show a significantly reduced ABA level; moreover, exogenous application of 1.0 µM ABA can suppress OsERF106MZ-mediated root growth promotion. Additionally, OsERF106MZ-overexpressing roots display less sensitivity to ABA-mediated root growth inhibition when treated with 5.0 µM ABA under normal conditions or exposed to NaCl-treated conditions. Furthermore, chromatin immunoprecipitation (ChIP)-qPCR and luciferase (LUC) reporter assays showed that OsERF106MZ can bind directly to the sequence containing the GCC box in the promoter region of the OsAO3 gene and repress the expression of OsAO3. CONCLUSIONS: OsERF106MZ may play a role in maintaining root growth for resource uptake when rice seeds germinate under salinity stress by alleviating ABA-mediated root growth inhibition.


Assuntos
Ácido Abscísico , Oryza , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plântula/metabolismo , Cloreto de Sódio/metabolismo , Salinidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Salino/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
2.
Plant Cell Physiol ; 63(2): 217-233, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752612

RESUMO

Plant chloroplast RNA splicing and ribosome maturation (CRM)-domain-containing proteins are capable of binding RNA to facilitate the splicing of group I or II introns in chloroplasts, but their functions in mitochondria are less clear. In the present study, Arabidopsis thaliana CFM6, a protein with a single CRM domain, was expressed in most plant tissues, particularly in flower tissues, and restricted to mitochondria. Mutation of CFM6 causes severe growth defects, including stunted growth, curled leaves, delayed embryogenesis and pollen development. CFM6 functions specifically in the splicing of group II intron 4 of nad5, which encodes a subunit of mitochondrial complex I, as evidenced by the loss of nad5 intron 4 splicing and high accumulation of its pretranscripts in cfm6 mutants. The phenotypic and splicing defects of cfm6 were rescued in transgenic plants overexpressing 35S::CFM6-YFP. Splicing failure in cfm6 also led to the loss of complex I activity and to its improper assembly. Moreover, dysfunction of complex I induced the expression of proteins or genes involved in alternative respiratory pathways in cfm6. Collectively, CFM6, a previously uncharacterized CRM domain-containing protein, is specifically involved in the cis-splicing of nad5 intron 4 and plays a pivotal role in mitochondrial complex I biogenesis and normal plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Íntrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Splicing de RNA/genética
3.
Plant Mol Biol ; 94(4-5): 531-548, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28631168

RESUMO

KEY MESSAGE: The homologous genes OsbHLH068 and AtbHLH112 have partially redundant functions in the regulation of the salt stress response but opposite functions to control flowering in Arabidopsis. The transcription factor (TF) basic/Helix-Loop-Helix (bHLH) is important for plant growth, development, and stress responses. OsbHLH068, which is a homologous gene of AtbHLH112 that is up-regulated under drought and salt stresses, as indicated by previous microarray data analysis. However, the intrinsic function of OsbHLH068 remains unknown. In the present study, we characterized the function and compared the role of OsbHLH068 with that of its homolog, AtbHLH112. Histochemical GUS staining indicated that OsbHLH068 and AtbHLH112 share a similar expression pattern in transgenic Arabidopsis during the juvenile-to-adult phase transition. Heterologous overexpression of OsbHLH068 in Arabidopsis delays seed germination, decreases salt-induced H2O2 accumulation, and promotes root elongation, whereas AtbHLH112 knock-out mutant displays an opposite phenotype. Both OsbHLH068-overexpressing transgenic Arabidopsis seedlings and the Atbhlh112 mutant display a late-flowering phenotype. Moreover, the expression of OsbHLH068-GFP driven by an AtbHLH112 promoter can compensate for the germination deficiency in the Atbhlh112 mutant, but the delayed-flowering phenotype tends to be more severe. Further analysis by microarray and qPCR indicated that the expression of FT is down-regulated in both OsbHLH068-overexpressing Arabidopsis plants and Atbhlh112 mutant plants, whereas SOC1 but not FT is highly expressed in AtbHLH112-overexpressing Arabidopsis plants. A comparative transcriptomic analysis also showed that several stress-responsive genes, such as AtERF15 and AtPUB23, were affected in both OsbHLH068- and AtbHLH112-overexpressing transgenic Arabidopsis plants. Thus, we propose that OsbHLH068 and AtbHLH112 share partially redundant functions in the regulation of abiotic stress responses but have opposite functions to control flowering in Arabidopsis, presumably due to the evolutionary functional divergence of homolog-encoded proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Cloreto de Sódio/toxicidade , Estresse Fisiológico/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
4.
Theor Appl Genet ; 128(2): 283-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25412992

RESUMO

KEY MESSAGE: High-resolution genetic linkage mapping and BAC physical mapping narrowed the fertility restorer locus Rfm1 in barley to a sub-centimorgan genetic interval and a 208-kb physical interval. Rfm1 restores the fertility of msm1 and msm2 male-sterile cytoplasms in barley. The fertility restoration gene is located on the short arm of chromosome 6H (6HS), and we pursued a positional cloning of this gene. Starting from a previous result that has delimited Rfm1 within a 10.8 cM region on 6HS, we developed novel CAPS and SSR markers tightly linked to the gene in barley using the sequence information from the syntenic region of rice and barley genome assemblies. Next, we performed fine mapping of the Rfm1 locus. To isolate recombinants, we surveyed 3,638 F2 plants derived from a cross between the CMS strain and the Rf strain with adjacent markers (NAS2090 and NAS1080). This analysis identified 175 recombinant plants from the F2 population to build a high-resolution map with nine markers tightly linked to the Rfm1 locus. Rfm1 was located within the 0.14 cM region delimited by two markers (NAS9113 and NAS9200). Using these flanking markers as well as marker cosegregating with Rfm1 (NAS9133), we screened the BAC libraries of the cultivar Morex, an rfm1 carrier. We isolated 11 BAC clones and constructed a BAC physical map using their fingerprints. Finally, we delimited the Rfm1 locus encompassing the rfm1 allele on a 208-kb contig composed of three minimally overlapping BAC clones. This precise localization of the Rfm1 locus in the barley genome is expected to greatly accelerate the future map-based cloning of the Rfm1 gene by sequence analysis and its genetic transformation for the complementation of cytoplasmic male-sterile plants.


Assuntos
Ligação Genética , Hordeum/genética , Mapeamento Físico do Cromossomo , Infertilidade das Plantas/genética , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Hibridização Genômica Comparativa , DNA de Plantas/genética , Flores/anatomia & histologia , Genes de Plantas , Marcadores Genéticos , Genótipo
5.
Front Plant Sci ; 13: 924417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873977

RESUMO

During sexual reproduction in flowering plants, haploid spores are formed from meiosis of spore mother cells. The spores then undergo mitosis, develop into female and male gametophytes, and give rise to seeds after fertilization. We identified a female sterile mutant ap1g2-4 from EMS mutagenesis, and analyses of two T-DNA insertion mutants, ap1g2-1 +/- and ap1g2-3 -/-, and detected a partial female and male sterility. The ap1g2 mutant gametophyte development was arrested at one nuclear stage. A complementation test using a genomic sequence of AP1G2 with its native promoter restored the function in the three ap1g2 mutant lines. Transcriptome profiling of ap1g2 ovules revealed that four genes encoding clathrin assembly proteins PICALM5A/B and PICALM9A/B, which were involved in endocytosis, were downregulated, which were confirmed to interact with AP1G2 through yeast two-hybrid assays and BIFC analysis. Our result also demonstrated that RALFL4-8-15-19-26 CML16 and several calcium-dependent protein kinases, including CPK14-16-17, were all downregulated in the ovules of ap1g2-1 +/-. Moreover, Ca2+ concentration was low in impaired gametophytes. Therefore, we proposed that through interaction with PICALM5A/B and PICALM9A/B, AP1G2 may mediate gametogenesis accompanied by Ca2+ signaling in Arabidopsis. Our findings revealed a crucial role of AP1G2 in female and male gametogenesis in Arabidopsis and enhanced our understanding of the molecular mechanisms underpinning sexual reproduction in flowering plants.

6.
Rice (N Y) ; 14(1): 82, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34542722

RESUMO

Transcription factors (TFs) such as ethylene-responsive factors (ERFs) are important for regulating plant growth, development, and responses to abiotic stress. Notably, more than half of the rice ERF-X group members, including ethylene-responsive factor 106 (OsERF106), are abiotic stress-responsive genes. However, their regulatory roles in abiotic stress responses remain poorly understood. OsERF106, a salinity-induced gene of unknown function, is annotated differently in RAP-DB and MSU RGAP. In this study, we isolated a novel (i.e., previously unannotated) OsERF106 gene, designated OsERF106MZ (GenBank accession No. MZ561461), and investigated its role in regulating growth and the response to salinity stress in rice. OsERF106MZ is expressed in germinating seeds, primary roots, and developing flowers. Overexpression of OsERF106MZ led to retardation of growth, relatively high levels of both malondialdehyde (MDA) and reactive oxygen species (ROS), reduced catalase (CAT) activity, and overaccumulation of both sodium (Na+) and potassium (K+) ions in transgenic rice shoots. Additionally, the expression of OsHKT1.3 was downregulated in the shoots of transgenic seedlings grown under both normal and NaCl-treated conditions, while the expression of OsAKT1 was upregulated in the same tissues grown under NaCl-treated conditions. Further microarray and qPCR analyses indicated that the expression of several abiotic stress-responsive genes such as OsABI5 and OsSRO1c was also altered in the shoots of transgenic rice grown under either normal or NaCl-treated conditions. The novel transcription factor OsERF106MZ negatively regulates shoot growth and salinity tolerance in rice through the disruption of ion homeostasis and modulation of stress-responsive gene expression.

7.
Bot Stud ; 60(1): 22, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31512008

RESUMO

BACKGROUND: In the past two decades, biologists have been able to identify the gene signatures associated with various phenotypes through the monitoring of gene expressions with high-throughput biotechnologies. These gene signatures have in turn been successfully applied to drug development, disease prevention, crop improvement, etc. However, ignoring the interactions among genes has weakened the predictive power of gene signatures in practical applications. Gene regulatory networks, in which genes are represented by nodes and the associations between genes are represented by edges, are typically constructed to analyze and visualize such gene interactions. More specifically, the present study sought to measure gene-gene associations by using the coefficient of intrinsic dependence (CID) to capture more nonlinear as well as cause-effect gene relationships. RESULTS: A stepwise procedure using the CID along with the partial coefficient of intrinsic dependence (pCID) was demonstrated for the rebuilding of simulated networks and the well-known CBF-COR pathway under cold stress using Arabidopsis microarray data. The procedure was also applied to the construction of bHLH gene regulatory pathways under abiotic stresses using rice microarray data, in which OsbHLH104, a putative phytochrome-interacting factor (OsPIF14), and OsbHLH060, a positive regulator of iron homeostasis (OsPRI1) were inferred as the most affiliated genes. The inferred regulatory pathways were verified through literature reviews. CONCLUSIONS: The proposed method can efficiently decipher gene regulatory pathways and may assist in achieving higher predictive power in practical applications. The lack of any mention in the literature of some of the regulatory event may have been due to the high complexity of the regulatory systems in the plant transcription, a possibility which could potentially be confirmed in the near future given ongoing rapid developments in bio-technology.

8.
Bot Stud ; 60(1): 12, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292815

RESUMO

BACKGROUND: Rice (Oryza sativa) is one of the main crops in the world, and more than 3.9 billion people will consume rice by 2025. Sterility significantly affects rice production and leads to yield defects. The undeveloped anthers or abnormal pollen represent serious defects in rice male sterility. Therefore, understanding the mechanism of male sterility is an important task. Here, we investigated a rice sterile mutant according to its developmental morphology and transcriptional profiles. RESULTS: An untagged T-DNA insertional mutant showed defective pollen and abnormal anthers as compared with its semi-sterile mutant (sstl) progeny segregates. Transcriptomic analysis of sterile sstl-s revealed several biosynthesis pathways, such as downregulated cell wall, lipids, secondary metabolism, and starch synthesis. This downregulation is consistent with the morphological characterization of sstl-s anthers with irregular exine, absence of intine, no starch accumulation in pollen grains and no accumulated flavonoids in anthers. Moreover, defective microsporangia development led to abnormal anther locule and aborted microspores. The downregulated lipids, starch, and cell wall synthesis-related genes resulted in loss of fertility. CONCLUSIONS: We illustrate the importance of microsporangia in the development of anthers and functional microspores. Abnormal development of pollen grains, pollen wall, anther locule, etc. result in severe yield reduction.

9.
Rice (N Y) ; 11(1): 50, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30203325

RESUMO

BACKGROUND: Many transcription factors (TFs), such as those in the basic helix-loop-helix (bHLH) family, are important for regulating plant growth and plant responses to abiotic stress. The expression of OsbHLH035 is induced by drought and salinity. However, its functional role in rice growth, development, and the salt response is still unknown. RESULTS: The bHLH TF OsbHLH035 is a salt-induced gene that is primarily expressed in germinating seeds and seedlings. Stable expression of GFP-fused OsbHLH035 in rice transgenic plants revealed that this protein is predominantly localized to the nucleus. Osbhlh035 mutants show delayed seed germination, particularly under salt-stress conditions. In parallel, abscisic acid (ABA) contents are over-accumulated, and the expression of the ABA biosynthetic genes OsABA2 and OsAAO3 is upregulated; furthermore, compared with that in wild-type (WT) seedlings, the salt-induced expression of OsABA8ox1, an ABA catabolic gene, in germinating Osbhlh035 mutant seeds is downregulated. Moreover, Osbhlh035 mutant seedlings are unable to recover from salt-stress treatment. Consistently, sodium is over-accumulated in aerial tissues but slightly reduced in terrestrial tissues from Osbhlh035 seedlings after salt treatment. Additionally, the expression of the sodium transporters OsHKT1;3 and 1;5 is reduced in Osbhlh035 aerial and terrestrial tissues, respectively. Furthermore, genetic complementation can restore both the delayed seed germination and the impaired recovery of salt-treated Osbhlh035 seedlings to normal growth. CONCLUSION: OsbHLH035 mediates seed germination and seedling recovery after salt stress relief through the ABA-dependent and ABA-independent activation of OsHKT pathways, respectively.

10.
PLoS One ; 10(7): e0131391, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26133169

RESUMO

Cold stress affects rice growth, quality and yield. The investigation of genome-wide gene expression is important for understanding cold stress tolerance in rice. We performed comparative transcriptome analysis of the shoots and roots of 2 rice seedlings (TNG67, cold-tolerant; and TCN1, cold-sensitive) in response to low temperatures and restoration of normal temperatures following cold exposure. TNG67 tolerated cold stress via rapid alterations in gene expression and the re-establishment of homeostasis, whereas the opposite was observed in TCN1, especially after subsequent recovery. Gene ontology and pathway analyses revealed that cold stress substantially regulated the expression of genes involved in protein metabolism, modification, translation, stress responses, and cell death. TNG67 takes advantage of energy-saving and recycling resources to more efficiently synthesize metabolites compared with TCN1 during adjustment to cold stress. During recovery, expression of OsRR4 type-A response regulators was upregulated in TNG67 shoots, whereas that of genes involved in oxidative stress, chemical stimuli and carbohydrate metabolic processes was downregulated in TCN1. Expression of genes related to protein metabolism, modification, folding and defense responses was upregulated in TNG67 but not in TCN1 roots. In addition, abscisic acid (ABA)-, polyamine-, auxin- and jasmonic acid (JA)-related genes were preferentially regulated in TNG67 shoots and roots and were closely associated with cold stress tolerance. The TFs AP2/ERF were predominantly expressed in the shoots and roots of both TNG67 and TCN1. The TNG67-preferred TFs which express in shoot or root, such as OsIAA23, SNAC2, OsWRKY1v2, 24, 53, 71, HMGB, OsbHLH and OsMyb, may be good candidates for cold stress tolerance-related genes in rice. Our findings highlight important alterations in the expression of cold-tolerant genes, metabolic pathways, and hormone-related and TF-encoding genes in TNG67 rice during cold stress and recovery. The cross-talk of hormones may play an essential role in the ability of rice plants to cope with cold stress.


Assuntos
Oryza/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Fatores de Transcrição/fisiologia , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Redes e Vias Metabólicas/fisiologia , Oryza/fisiologia , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Plântula/metabolismo , Plântula/fisiologia , Estresse Fisiológico/fisiologia
11.
Plant Sci ; 233: 44-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711812

RESUMO

Rice is a major food source for much of the world, and expanding our knowledge of genes conferring specific rice grain attributes will benefit both farmer and consumer. Here we present novel dull grain mutants with a low amylose content (AC) derived from mutagenesis of Oryza sativa, ssp. japonica cv. Taikeng 8 (TK8). Positional cloning of the gene conferring the dull grain phenotype revealed a point mutation located at the acceptor splice site of intron 11 of FLOURY ENDOSPERM2 (FLO2), encoding a tetratricopeptide repeat domain (TPR)-containing protein. Three novel flo2 alleles were identified herein, which surprisingly conferred dull rather than floury grains. The allelic diversity of flo2 perturbed the expression of starch synthesis-related genes including OsAGPL2, OsAGPS2b, OsGBSSI, OsBEI, OsBEIIb, OsISA1, and OsPUL. The effect of the flo2 mutations on the physicochemical properties of the grain included a low breakdown, setback, and consistency of rice, indicating a good elasticity and soft texture of cooked rice grains. The effects of FLO2, combined with the genetic background of the germplasm and environmental effects, resulted in a variety of different amylose content levels, grain appearance, and physicochemical properties of rice, providing a host of useful information to future grain-quality research and breeding.


Assuntos
Amilose/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Sementes/genética , Alelos , Mutação , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Sementes/metabolismo
12.
Rice (N Y) ; 5(1): 33, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24279948

RESUMO

BACKGROUND: Actin depolymerizing factors (ADFs) are small actin-binding proteins. Many higher-plant ADFs has been known to involve in plant growth, development and pathogen defense. However, in rice the temporal and spatial expression of OsADF gene family and their relationship with abiotic stresses tolerance is still unknown. RESULTS: Here we reported the first comprehensive gene expression profile analysis of OsADF gene family. The OsADF genes showed distinct and overlapping gene expression patterns at different growth stages, tissues and abiotic stresses. We also demonstrated that both OsADF1 and OsADF3 proteins were localized in the nucleus. OsADF1 and OsADF3 were preferentially expressed in vascular tissues. Under ABA or abiotic stress treatments, OsADF3::GUS activity was enhanced in lateral roots and root tips. Ectopically overexpressed OsADF3 conferred the mannitol- and drought-stress tolerance of transgenic Arabidopsis seedlings by increasing germination rate, primary root length and survival. Several drought-tolerance responsive genes (RD22, ABF4, DREB2A, RD29A, PIP1; 4 and PIP2; 6) were upregulated in transgenic Arabidopsis under drought stress. CONCLUSIONS: These results suggested that OsADF gene family may participate in plant abiotic stresses response or tolerance and would facilitate functional validation of other OsADF genes.

13.
J Agric Food Chem ; 56(19): 8962-8, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18767858

RESUMO

To fulfill labeling and traceability requirement of genetically modified (GM) maize for trade and regulation, it is essential to develop an event-specific detection method for monitoring the presence of transgenes. In pursuit of this purpose, we systematically optimized and established a combined event- and construct-specific multiplex polymerase chain reaction (mPCR) technique for simultaneous detection of 8 GM maize lines. Altogether 9 sets of primers were designed, including six that were event-specific for Event176, Bt11, TC1507, NK603, MON863, and Mon810; two that were construct-specific for T25 and GA21, and one for an endogenous zein gene. The transgene in each GM maize line and the endogenous zein gene could be clearly detected and distinguished according to the different sizes of PCR amplicons. The limit of detection (LOD) was approximately 0.25% (v/v), although the detection can be as sensitive as 0.1% as demonstrated by the International Seed Testing Association (ISTA) proficiency test. This study further improves the current PCR-based detection method for GM maize. The method can be used in an easy, sensitive, and cost and time effective way for the identification and quality screening of a specific GM maize line.


Assuntos
DNA de Plantas/análise , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase/métodos , Zea mays/genética , DNA de Plantas/química , Análise de Sequência de DNA
14.
Plant Cell Physiol ; 47(1): 1-13, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16299003

RESUMO

Plant roots retain developmental plasticity and respond to environmental stresses or exogenous plant growth regulators by undergoing profound morphological and physiological alteration. In this study, we investigated the effects of exogenous ABA on root growth and development in Taichung native 1 (TN1) rice. Exogenous application of 10 microM ABA leads to swelling, root hair formation and initiation of lateral root primodia in the tips of young, seminal rice roots. Cortex cells increased in size and were irregularly shaped. ABA treatment significantly increased 2, 3, 5-triphenyl tetrazolium chloride (TTC) reductase ability in the root tips and the exudation rate of xylem sap. In addition, the K(+) ion content in xylem sap increased nearly 2-fold, but not that of Ca(2+) or Mg(2+). Analysis of proteins expressed in the root tips identified several ABA-induced or -repressed proteins, including actin depolymerization factor (ADF), late embryo abundant protein (LEA), putative steroid membrane-binding protein, ferredoxin thionine reductase and calcium-binding protein. The effects of ABA on root morphogenesis change were Ca(2+) dependent and required the participation of calmodulin and de novo protein synthesis. A model is presented that illustrates how ABA acts through a potential cellular and signal transduction mechanism to induce morphological and physiological changes in rice roots.


Assuntos
Ácido Abscísico/farmacologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Sequência de Aminoácidos , Cálcio/metabolismo , Eletroforese em Gel Bidimensional , Magnésio/metabolismo , Dados de Sequência Molecular , Oryza/genética , Oryza/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Potássio/metabolismo , Sais de Tetrazólio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA