Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133248

RESUMO

Mitochondrial carriers (MCs) are essential proteins that transport metabolites across mitochondrial membranes and play a critical role in cellular metabolism. ADP/ATP (adenosine diphosphate/adenosine triphosphate) is one of the most important carriers as it contributes to cellular energy production and is susceptible to the powerful toxin bongkrekic acid. This toxin has claimed several lives; for example, a recent foodborne outbreak in Taipei, Taiwan, has caused four deaths and sickened 30 people. The issue of bongkrekic acid poisoning has been a long-standing problem in Indonesia, with reports as early as 1895 detailing numerous deaths from contaminated coconut fermented cakes. In bioinformatics, significant advances have been made in understanding biological processes through computational methods; however, no established computational method has been developed for identifying mitochondrial carriers. We propose a computational bioinformatics approach for predicting MCs from a broader class of secondary active transporters with a focus on the ADP/ATP carrier and its interaction with bongkrekic acid. The proposed model combines protein language models (PLMs) with multiwindow scanning convolutional neural networks (mCNNs). While PLM embeddings capture contextual information within proteins, mCNN scans multiple windows to identify potential binding sites and extract local features. Our results show 96.66% sensitivity, 95.76% specificity, 96.12% accuracy, 91.83% Matthews correlation coefficient (MCC), 94.63% F1-Score, and 98.55% area under the curve (AUC). The results demonstrate the effectiveness of the proposed approach in predicting MCs and elucidating their functions, particularly in the context of bongkrekic acid toxicity. This study presents a valuable approach for identifying novel mitochondrial complexes, characterizing their functional roles, and understanding mitochondrial toxicology mechanisms. Our findings, that utilize computational methods to improve our understanding of cellular processes and drug-target interactions, contribute to the development of therapeutic strategies for mitochondrial disorders, reducing the devastating effects of bongkrekic acid poisoning.

2.
J Mol Biol ; 436(22): 168769, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214282

RESUMO

Deciphering the mechanisms governing protein-DNA interactions is crucial for understanding key cellular processes and disease pathways. In this work, we present a powerful deep learning approach that significantly advances the computational prediction of DNA-interacting residues from protein sequences. Our method leverages the rich contextual representations learned by pre-trained protein language models, such as ProtTrans, to capture intrinsic biochemical properties and sequence motifs indicative of DNA binding sites. We then integrate these contextual embeddings with a multi-window convolutional neural network architecture, which scans across the sequence at varying window sizes to effectively identify both local and global binding patterns. Comprehensive evaluation on curated benchmark datasets demonstrates the remarkable performance of our approach, achieving an area under the ROC curve (AUC) of 0.89 - a substantial improvement over previous state-of-the-art sequence-based predictors. This showcases the immense potential of pairing advanced representation learning and deep neural network designs for uncovering the complex syntax governing protein-DNA interactions directly from primary sequences. Our work not only provides a robust computational tool for characterizing DNA-binding mechanisms, but also highlights the transformative opportunities at the intersection of language modeling, deep learning, and protein sequence analysis. The publicly available code and data further facilitate broader adoption and continued development of these techniques for accelerating mechanistic insights into vital biological processes and disease pathways. In addition, the code and data for this work are available at https://github.com/B1607/DIRP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA