Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther Oncolytics ; 24: 729-741, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35317513

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy has been shown to be an effective strategy for combatting non-solid tumors; however, CAR-T therapy is still a challenge for solid tumors, such as glioblastoma. To improve CAR-T therapy for glioblastoma, a new TanCAR, comprising the tandem arrangement of IL13 (4MS) and EphA2 scFv, was generated and validated in vitro and in vivo. In vitro, the novel TanCAR-redirected T cells killed glioblastoma tumor cells by recognizing either IL-13 receptor α2 (IL13Rα2) or EphA2 alone or together upon simultaneous encounter of both targets, but did not kill normal cells bearing only the IL13Rα1/IL4Rα receptor. As further proof of principle, the novel TanCAR was tested in a subcutaneous glioma xenograft mouse model. The results indicated that the novel TanCAR-redirected T cells produced greater glioma tumor regression than single CAR-T cells. Thus, the novel TanCAR-redirected T cells kill gliomas more efficiently and selectively than a single IL13 CAR or EphA2 scFv CAR, with the potential for preventing antigen escape and reduced off-target cytotoxicity.

2.
Obesity (Silver Spring) ; 30(12): 2424-2439, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36415997

RESUMO

OBJECTIVE: Lipid metabolic disorders pose a serious threat to human health, and currently no good treatments exist. In earlier studies by the authors, HepG2 cells with diacylglycerol kinase theta (DGKθ) knockout were found to cause significant lipid accumulation, suggesting that DGKθ may be a potential target for treating lipid metabolic disorders. METHODS: A high-throughput screening of natural products targeting the potential signaling pathway of lipid metabolism was carried out in the DGKθ-T2A-luciferase knock-in HepG2 cell. RNA-sequencing and bioinformatic approaches were used to analyze the potential pathway by which rutaecarpin decreases lipids. Western blot and quantitative polymerase chain reaction were performed to investigate the mechanisms of rutaecarpin's reduction in lipid levels. RESULTS: Rutaecarpin was found to significantly enhance DGKθ expression, and the potential mechanisms by which rutaecarpin accelerates lipid metabolism by targeting DGKθ was explored in vitro and in vivo. The results indicated that rutaecarpin could markedly reduce lipid accumulation in oleic acid-induced HepG2 cells and in high-fat diet-induced obese C57BL/6J mice by targeting the hepatocyte nuclear factor 1-beta (HNF1B)-DGKθ-peroxisome proliferator-activated receptor alpha (PPARα)-apolipoprotein C3 (APOC3) pathway. CONCLUSION: Rutaecarpin is effective in reducing lipid accumulation, and the development of a high-throughput screening platform based on a reporter knock-in cell line may facilitate the discovery of effective drugs for lipid metabolic disorders based on the DGKθ target.


Assuntos
Metabolismo dos Lipídeos , PPAR alfa , Camundongos , Animais , Humanos , PPAR alfa/genética , PPAR alfa/metabolismo , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos/genética , Obesidade/genética , Lipídeos
3.
Cells Dev ; 166: 203665, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33994350

RESUMO

MicroRNAs are important regulators in stem cells, which involve in gene regulation, including cell proliferation, differentiation and apoptosis. As an important one, miR-34c participates in various processes by targeting protein-coding genes. It is generally considered as a tumor suppressor and cell adhesion inhibitor. However, whether miR-34c has effects on pluripotent stem cells is not clear. Here, by mir-34c mimics transfection, the function of miR-34c on porcine induced pluripotent stem cell (piPSC)-like cells was investigated. Bioinformatics analyses showed that c-Myc is miR-34c's candidate target, which was confirmed by dual Luciferase assay. The knockout of miR-34c indicated that mir-34c affects the proliferation and pluripotency of piPSC-like cells by targeting c-Myc. Our study explored the regulatory mechanism of miR-34c on piPSC-like cells, providing a reference for the establishment of true porcine PSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células/genética , Regulação da Expressão Gênica , Camundongos , MicroRNAs/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA