Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(5): 656-663, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632374

RESUMO

Understanding the factors underpinning device switching times is crucial for the implementation of organic electrochemical transistors in neuromorphic computing, bioelectronics and real-time sensing applications. Existing models of device operation cannot explain the experimental observations that turn-off times are generally much faster than turn-on times in accumulation mode organic electrochemical transistors. Here, using operando optical microscopy, we image the local doping level of the transistor channel and show that turn-on occurs in two stages-propagation of a doping front, followed by uniform doping-while turn-off occurs in one stage. We attribute the faster turn-off to a combination of engineering as well as physical and chemical factors including channel geometry, differences in doping and dedoping kinetics and the phenomena of carrier-density-dependent mobility. We show that ion transport limits the operation speed in our devices. Our study provides insights into the kinetics of organic electrochemical transistors and guidelines for engineering faster organic electrochemical transistors.

2.
Chem Soc Rev ; 53(15): 7742-7783, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38904425

RESUMO

Aqueous Zn-metal batteries have attracted increasing interest for large-scale energy storage owing to their outstanding merits in terms of safety, cost and production. However, they constantly suffer from inadequate energy density and poor cycling stability due to the presence of zinc ions in the fully hydrated solvation state. Thus, designing the dehydrated solvation structure of zinc ions can effectively address the current drawbacks of aqueous Zn-metal batteries. In this case, considering the lack of studies focused on strategies for the dehydration of zinc ions, herein, we present a systematic and comprehensive review to deepen the understanding of zinc-ion solvation regulation. Two fundamental design principles of component regulation and pre-desolvation are summarized in terms of solvation environment formation and interfacial desolvation behavior. Subsequently, specific strategy based distinct principles are carefully discussed, including preparation methods, working mechanisms, analysis approaches and performance improvements. Finally, we present a general summary of the issues addressed using zinc-ion dehydration strategies, and four critical aspects to promote zinc-ion solvation regulation are presented as an outlook, involving updating (de)solvation theories, revealing interfacial evolution, enhancing analysis techniques and developing functional materials. We believe that this review will not only stimulate more creativity in optimizing aqueous electrolytes but also provide valuable insights into designing other battery systems.

3.
Small ; 20(17): e2307728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263806

RESUMO

Herein, the structure of integrated M3D inverters are successfully demonstrated where a chemical vapor deposition (CVD) synthesized monolayer WSe2 p-type nanosheet FET is vertically integrated on top of CVD synthesized monolayer MoS2 n-type film FET arrays (2.5 × 2.5 cm) by semiconductor industry techniques, such as transfer, e-beam evaporation (EBV), and plasma etching processes. A low temperature (below 250 °C) is employed to protect the WSe2 and MoS2 channel materials from thermal decomposition during the whole fabrication process. The MoS2 NMOS and WSe2 PMOS device fabricated show an on/off current ratio exceeding 106 and the integrated M3D inverters indicate an average voltage gain of ≈9 at VDD = 2 V. In addition, the integrated M3D inverter demonstrates an ultra-low power consumption of 0.112 nW at a VDD of 1 V. Statistical analysis of the fabricated inverters devices shows their high reliability, rendering them suitable for large-area applications. The successful demonstration of M3D inverters based on large-scale 2D monolayer TMDs indicate their high potential for advancing the application of 2D TMDs in future integrated circuits.

4.
Inorg Chem ; 63(20): 9058-9065, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38720438

RESUMO

Nitrofurans are important synthetic broad-spectrum antibacterial drugs with the basic structure of 5-nitrofuran. Due to their toxicity, it is essential to develop a sensitive sensor with strong anti-interference capabilities for their detection. In this work, two {P4Mo6O31}12--based compounds, [H4(HPTTP)]2{CuI[Mo12O24(OH)6(PO4)3(HPO4)(H2PO4)4]}·xH2O (x = 13 for (1), 7 for (2); HPTTP = 4,4',4″,4‴-(1H-pyrrole-2,3,4,5-tetrayl)tetrapyridine), exhibiting similar coordination but distinct stacking modes. Both compounds were synthesized and used for the electrochemical detection of nitrofuran antibiotics. The tetrapyridine-based ligand was generated in situ during assembly, and its potential mechanism was discussed. Composite electrode materials, formed by mixing graphite powder with compounds 1-2 and physically grinding them, proved to be highly effective in the electrochemical trace detection of furazolidone (FZD) and furaltadone hydrochloride (FTD·HCl) under optimal conditions. Besides, the possible electrochemical detection mechanisms of two nitro-antibiotics were studied.


Assuntos
Antibacterianos , Complexos de Coordenação , Cobre , Nitrofuranos , Polímeros , Antibacterianos/química , Antibacterianos/análise , Ligantes , Nitrofuranos/análise , Nitrofuranos/química , Cobre/química , Cobre/análise , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Polímeros/química , Molibdênio/química , Piridinas/química , Estrutura Molecular , Técnicas Eletroquímicas , Modelos Moleculares
5.
Appl Microbiol Biotechnol ; 108(1): 225, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376561

RESUMO

The gut microbial communities interact with the host immunity and physiological functions. In this study, we investigated the bacterial composition in Litopenaeus vannamei shrimp's gut and rearing water under different host (developmental stage: juvenile and adult; health status: healthy and diseased) and environmental factors (temperature 25 °C and 28 °C; and light intensity: low and high). The PCoA analysis showed that all water samples were clustered together in a quarter, whereas the gut samples spread among three quarters. In terms of functional bacteria, gut samples of adult shrimp, healthy adult shrimp, adult shrimp raised at 28 °C, and juvenile shrimp under high light intensity exhibited a higher abundance of Vibrionaceae compared to each other opposite group. Gut samples of juvenile shrimp, infected adult shrimp, juvenile shrimp with low light intensity, and adult shrimp with a water temperature of 25 °C showed a higher abundance of Pseudoaltromonadaceae bacteria compared to each other opposite group. Gut samples of juvenile shrimp, healthy adult shrimp, adult shrimp raised at a water temperature of 28 °C, and juvenile shrimp with high light intensity showed the higher abundance of Firmicutes/Bacteroidota ratio compared to each other opposite group. Our results showed that L. vannamei juveniles are more sensitive to bacterial infections; besides, water temperature of 28 °C and high light intensity groups were both important conditions improving the shrimp gut bacterial composition under industrial indoor farming systems. KEY POINTS: • Bacteria diversity was higher among shrimp intestinal microbiota compared to the rearing water. • Shrimp juveniles are more sensitive to bacterial infection compared to adults. • Water temperature of 28 °C and high light intensity are recommended conditions for white shrimp aquaculture.


Assuntos
Microbioma Gastrointestinal , Microbiota , Penaeidae , Animais , Agricultura , Fazendas , Água
6.
Angew Chem Int Ed Engl ; 63(11): e202316596, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38216533

RESUMO

Embedding both boron and nitrogen into the backbone of acenes to generate their isoelectronic structures has significantly enriched the acene chemistry to offer appealing properties. However, only small BN-heteroacenes have been extensively investigated, with BN-heptacenes as the hitherto longest homologue. Herein, we report the synthesis of three new nonacene BN-isosteres via incorporating a pair of antiaromatic B2 C4 and N2 C4 heterocycles, representing a new length record for BN-heteroacenes. The distance between the B2 C4 and N2 C4 rings affects the contribution of the charge-separated resonance forms, leading to tunable antiaromaticity of the two heterocycles. The adjusted local antiaromaticity manifests substantial influence on the molecular orbital arrangement, and consequently, the radiative transition rate of BN-3 is greatly enhanced compared with BN-1 and BN-2, realizing a high fluorescence quantum yield of 92 %. This work provides a novel design concept of large acene BN-isosteres and reveals the importance of BN/CC isosterism on their luminescent properties.

7.
Angew Chem Int Ed Engl ; 63(24): e202403050, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38579168

RESUMO

Unstable Zn interface with serious detrimental parasitic side-reactions and uncontrollable Zn dendrites severely plagues the practical application of aqueous zinc-ion batteries. The interface stability was closely related to the electrolyte configuration and Zn2+ depositional behavior. In this work, a unique Zn-ion anchoring strategy is originally proposed to manipulate the coordination structure of solvated Zn-ions and guide the Zn-ion depositional behavior. Specifically, the amphoteric charged ion additives (denoted as DM), which act as zinc-ion anchors, can tightly absorb on the Zn surface to guide the uniform zinc-ion distribution by using its positively charged -NR4 + groups. While the negatively charged -SO3 - groups of DM on the other hand, reduces the active water molecules within solvation sheaths of Zn-ions. Benefiting from the special synergistic effect, Zn metal exhibits highly ordered and compact (002) Zn deposition and negligible side-reactions. As a result, the advanced Zn||Zn symmetric cell delivers extraordinarily 7000 hours long lifespan (0.25 mA cm-2, 0.25 mAh cm-2). Additionally, based on this strategy, the NH4V4O10||Zn pouch-cell with low negative/positive capacity ratio (N/P ratio=2.98) maintains 80.4 % capacity retention for 180 cycles. A more practical 4 cm*4 cm sized pouch-cell could be steadily cycled in a high output capacity of 37.0 mAh over 50 cycles.

8.
Angew Chem Int Ed Engl ; 63(21): e202402833, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535776

RESUMO

Aqueous zinc-metal batteries (AZMBs) usually suffered from poor reversibility and limited lifespan because of serious water induced side-reactions, hydrogen evolution reactions (HER) and rampant zinc (Zn) dendrite growth. Reducing the content of water molecules within Zn-ion solvation sheaths can effectively suppress those inherent defects of AZMBs. In this work, we originally discovered that the two carbonyl groups of N-Acetyl-ϵ-caprolactam (N-ac) chelating ligand can serve as dual solvation sites to coordinate with Zn2+, thereby minimizing water molecules within Zn-ion solvation sheaths, and greatly inhibit water-induced side-reactions and HER. Moreover, the N-ac chelating additive can form a unique physical barrier interface on Zn surface, preventing the harmful contacting with water. In addition, the preferential adsorption of N-ac on Zn (002) facets can promote highly reversible and dendrite-free Zn2+ deposition. As a result, Zn//Cu half-cell within N-ac added electrolyte delivered ultra-high 99.89 % Coulombic efficiency during 8000 cycles. Zn//Zn symmetric cells also demonstrated unprecedented long life of more than 9800 hours (over one year). Aqueous Zn//ZnV6O16 ⋅ 8H2O (Zn//ZVO) full-cell preserved 78 % capacity even after ultra-long 2000 cycles. A more practical pouch-cell was also obtained (90.2 % capacity after 100 cycles). This method offers a promising strategy for accelerating the development of highly efficient AZMBs.

9.
Small ; 19(21): e2207764, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869407

RESUMO

Lithium-metal shows promising prospects in constructing various high-energy-density lithium-metal batteries (LMBs) while long-lasting tricky issues including the uncontrolled dendritic lithium growth and infinite lithium volume expansion seriously impede the application of LMBs. In this work, it is originally found that a unique lithiophilic magnetic host matrix (Co3 O4 -CCNFs) can simultaneously eliminate the uncontrolled dendritic lithium growth and huge lithium volume expansion that commonly occur in typical LMBs. The magnetic Co3 O4 nanocrystals which inherently embed on the host matrix act as nucleation sites and can also induce micromagnetic field and facilitate a targeted and ordered lithium deposition behavior thus, eliminating the formation of dendritic Li. Meanwhile, the conductive host can effectively homogenize the current distribution and Li-ion flux, thus, further relieving the volume expansion during cycling. Benefiting from this, the featured electrodes demonstrate ultra-high coulombic efficiency of 99.1% under 1 mA cm-2 and 1 mAh cm-2 . Symmetric cell under limited Li (10 mAh cm-2 ) inspiringly delivers ultralong cycle life of 1600 h (under 2 mA cm-2 , 1 mAh cm-2 ). Moreover, LiFePO4 ||Co3 O4 -CCNFs@Li full-cell under practical condition of limited negative/positive capacity ratio (2.3:1) can deliver remarkably improved cycling stability (with 86.6% capacity retention over 440 cycles).

10.
Small ; 19(49): e2303457, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37394714

RESUMO

Water-induced parasitic reactions and uncontrolled dendritic Zn growth are long-lasting tricky problems that severely hinder the development of aqueous zinc-metal batteries. Those notorious issues are closely related to electrolyte configuration and zinc-ion transport behavior. Herein, through constructing aligned dipoles induced electric-field on Zn surface, both the solvation structure and transport behavior of zinc-ions are fundamentally changed. The vertically ordered zinc-ion migration trajectory and gradually concentrated zinc-ion achieved inside the polarized electric-field remarkably eliminate water related side-reactions and Zn dendrites. Zn-metal under the polarized electric-field demonstrated significantly improve reversibility and a dendrite-free surface with strong (002) Zn deposition texturing. Zn||Zn symmetric cell delivers greatly prolonged lifespan up to 1400 h (17 times longer than that of the cell based on bare Zn) while the Zn||Cu half-cell demonstrate ultrahigh 99.9% coulombic efficiency. NH4 V4 O10 ||Zn half-cell delivered exceptional-high 132 mAh g-1 capacity after ultralong 2000 cycles (≈100% capacity retention). In addition, MnO2 ||Zn pouch-cell under aligned dipoles induced electric-field maintains 87.9% capacity retention after 150 cycles under practical condition of high MnO2 mass loading (≈10 mg cm-2 ) and limited N/P ratio. It is considered that this new strategy can also be implemented to other metallic batteries and spur the development of batteries with long-lifespan and high-energy-density.

11.
Eur Radiol ; 33(9): 6134-6144, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37014408

RESUMO

OBJECTIVES: To evaluate the dynamic evolution process of overall brain health in liver transplantation (LT) recipients, we employed a deep learning-based neuroanatomic biomarker to measure longitudinal changes of brain structural patterns before and 1, 3, and 6 months after surgery. METHODS: Because of the ability to capture patterns across all voxels from a brain scan, the brain age prediction method was adopted. We constructed a 3D-CNN model through T1-weighted MRI of 3609 healthy individuals from 8 public datasets and further applied it to a local dataset of 60 LT recipients and 134 controls. The predicted age difference (PAD) was calculated to estimate brain changes before and after LT, and the network occlusion sensitivity analysis was used to determine the importance of each network in age prediction. RESULTS: The PAD of patients with cirrhosis increased markedly at baseline (+ 5.74 years) and continued to increase within one month after LT (+ 9.18 years). After that, the brain age began to decrease gradually, but it was still higher than the chronological age. The PAD values of the OHE subgroup were higher than those of the no-OHE, and the discrepancy was more obvious at 1-month post-LT. High-level cognition-related networks were more important in predicting the brain age of patients with cirrhosis at baseline, while the importance of primary sensory networks increased temporarily within 6-month post-LT. CONCLUSIONS: The brain structural patterns of LT recipients showed inverted U-shaped dynamic change in the early stage after transplantation, and the change in primary sensory networks may be the main contributor. KEY POINTS: • The recipients' brain structural pattern showed an inverted U-shaped dynamic change after LT. • The patients' brain aging aggravated within 1 month after surgery, and the subset of patients with a history of OHE was particularly affected. • The change of primary sensory networks is the main contributor to the change in brain structural patterns.


Assuntos
Encefalopatia Hepática , Transplante de Fígado , Humanos , Estudos Longitudinais , Encefalopatia Hepática/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cirrose Hepática/patologia , Fibrose
12.
Nano Lett ; 22(22): 9138-9146, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354212

RESUMO

Owing to its high volumetric capacity and natural abundance, magnesium (Mg) metal has attracted tremendous attention as an ideal anode material for rechargeable Mg batteries. Despite Mg deposition playing an integral role in determining the cycling lifespan, its exact behavior is not clearly understood yet. Herein, for the first time, we introduce a facile approach to build magnesiophilic In/MgIn sites in situ on a Mg metal surface using InCl3 electrolyte additive for rechargeable Mg batteries. These magnesiophilic sites can regulate Mg deposition behaviors by homogenizing the distributions of Mg-ion flux and electric field at the electrode-electrolyte interphase, allowing flat and compact Mg deposition to inhibit short-circuiting. The as-designed Mg metal batteries achieve a stable cycling lifespan of 340 h at 1.0 mA cm-2 and 1.0 mAh cm-2 using Celgard separators, while the full cell coupled with Mo6S8 cathode maintains a high capacity retention of 95.5% over 800 cycles at 1 C.

13.
Drug Dev Res ; 84(7): 1468-1481, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534761

RESUMO

Distant metastasis is the primary reason for treatment failure in patients with nasopharyngeal carcinoma (NPC). In this study, we investigated the effect of ulinastatin (UTI) on NPC metastasis and its underlying mechanism. Highly-metastatic NPC cell lines S18 and 58F were treated with UTI and the effect on cell proliferation, migration, and invasion were determined by MTS and Transwell assays. S18 cells with luciferase-expressing (S18-1C3) were injected into the left hind footpad of nude mice to establish a model of spontaneous metastasis from the footpad to popliteal lymph node (LN). The luciferase messenger RNA (mRNA) was measured by quantitative polymerase chain reaction (qPCR), and the metastasis inhibition rate was calculated. Key molecular members of the UTI-related uPA, uPAR, and JAT/STAT3 signaling pathways were detected by qPCR and immunoblotting. UTI suppressed the migration and infiltration of S18 and 5-8F cells and suppressed the metastasis of S18 cells in vivo without affecting cell proliferation. uPAR expression decreased from 24 to 48 h after UTI treatment. The antimetastatic effect of UTI is partly due to the suppression of uPA and uPAR. UTI partially suppresses NPC metastasis by downregulating the expression of uPA and uPAR.


Assuntos
Neoplasias Nasofaríngeas , Animais , Camundongos , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Luciferases , Movimento Celular , Invasividade Neoplásica , Metástase Neoplásica
14.
Angew Chem Int Ed Engl ; 62(5): e202214931, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36433656

RESUMO

Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non-fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic-tac-toe frame of three-dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high-performance and stable OSCs.

15.
Mol Psychiatry ; 26(12): 7363-7371, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385597

RESUMO

Aberrant topological organization of whole-brain networks has been inconsistently reported in studies of patients with major depressive disorder (MDD), reflecting limited sample sizes. To address this issue, we utilized a big data sample of MDD patients from the REST-meta-MDD Project, including 821 MDD patients and 765 normal controls (NCs) from 16 sites. Using the Dosenbach 160 node atlas, we examined whole-brain functional networks and extracted topological features (e.g., global and local efficiency, nodal efficiency, and degree) using graph theory-based methods. Linear mixed-effect models were used for group comparisons to control for site variability; robustness of results was confirmed (e.g., multiple topological parameters, different node definitions, and several head motion control strategies were applied). We found decreased global and local efficiency in patients with MDD compared to NCs. At the nodal level, patients with MDD were characterized by decreased nodal degrees in the somatomotor network (SMN), dorsal attention network (DAN) and visual network (VN) and decreased nodal efficiency in the default mode network (DMN), SMN, DAN, and VN. These topological differences were mostly driven by recurrent MDD patients, rather than first-episode drug naive (FEDN) patients with MDD. In this highly powered multisite study, we observed disrupted topological architecture of functional brain networks in MDD, suggesting both locally and globally decreased efficiency in brain networks.


Assuntos
Transtorno Depressivo Maior , Encéfalo , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Tamanho da Amostra
16.
Analyst ; 147(9): 1952-1960, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35403630

RESUMO

Taking the hepatic sinusoid (HS) as the main delivery area of liver nutrients and metabolic waste, recognizing its structure is important for a deep understanding of liver function. In this paper, based on lycopersicon esculentum lectin (LEL), with targeting ability for endothelial cells, and carbon quantum dots (CQDs), with high biosafety, an LEL-coupled CQD immunofluorescence probe (CQD@LEL) that can label microvessels is designed and used for the fluorescence labeling and imaging of HS in liver tissue sections. The CQD size is approximately 2 nm. Blue fluorescence is emitted under excitation; its optimal excitation wavelength is 400 nm while the emission is at about 450 nm. Gel electrophoresis and capillary electrophoresis confirm that glutaraldehyde can couple LEL to CQD, and the obtained CQD@LEL retains the fluorescence property and has good stability. Optimization experiments show that its labeling effect is positively correlated with time and probe concentration for dyeing the blood vessels of mouse liver slices. In order to improve the effect further, a probe concentration of 0.17 mg mL-1 and incubation time of 3 h were chosen to label the liver tissue sections. The results show that the liver microvessels are formed by interstitial structures among the hepatic cords, and the HS presents a granular or patchy appearance. H&E and ultrathin section TEM show that the microvascular wall of the liver is composed of discontinuous endothelial cells, and there are Kupffer cells and other cells in the tubes, proving that our probe can clearly label the structure and morphology of liver microvessels. This work is of great significance for the visualization of HS.


Assuntos
Pontos Quânticos , Animais , Capilares , Carbono/química , Corantes , Células Endoteliais , Lectinas , Fígado , Camundongos , Pontos Quânticos/química
17.
Health Qual Life Outcomes ; 20(1): 69, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473557

RESUMO

OBJECTIVE: We sought to determine the association between mental stress-induced myocardial ischaemia (MSIMI) and quality of life (QoL) in patients with coronary artery disease (CAD) after coronary revascularization. METHODS: This cohort study involved patients with high-risk MSIMI who received coronary revascularization between Dec 2018 and Dec 2019. Patients who screened positive for depression/anxiety were enrolled in this study. Mental stress was induced by the Stroop Colour and Word Test 1 month after coronary revascularization. All participants underwent single photon emission computed tomography (SPECT) scans at rest and under mental stress. MSIMI was defined as the presence of four abnormal SPECT phenomena. QoL was assessed using the Seattle Angina Questionnaire (SAQ) prior to treatment and 1 month after coronary revascularization. RESULTS: Of the 1845 consecutive patients who received coronary revascularization, 590 (31.9%) had depression/anxiety, and 205 agreed to accept the mental stress test. During the average observation period of 33 days, 105 (51.2%) patients exhibited MSIMI. All SAQ subscales showed significant improvement, except for QoL, in the MSIMI group. The QoL score was lower (- 0.2 ± 32.7 vs. 13.1 ± 29.9, P = 0.005), and the proportion of deterioration in QoL was higher (50.5% vs. 31.9%, P = 0.010) in the MSIMI group than in the non-MSIMI group. Those with a deterioration in QoL had approximately twice the rate of MSIMI than those with an improvement in QoL (unadjusted OR: 2.019, 95% CI 1.122-3.634, P = 0.026; adjusted OR: 1.968, 95% CI 1.083-3.578, P = 0.017). CONCLUSION: Among patients with CAD who received coronary revascularization and had depression/anxiety, deterioration in QoL increased the likelihood of MSIMI. Hence, our results indicate that deterioration in QoL is a predictor of MSIMI. Trail Registration ChiCTR2200055792, retrospectively registered, 2022.1.20, www.medresman.org.cn.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Estudos de Coortes , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Humanos , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/cirurgia , Qualidade de Vida , Estresse Psicológico
18.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614137

RESUMO

In this study, we newly sequenced and analyzed the complete mitochondrial genomes of five genera and six species in Gargarini: Antialcidas floripennae, Centrotoscelus davidi, Kotogargara minuta, Machaerotypus stigmosus, Tricentrus fulgidus, and Tricentrus gammamaculatus. The mitochondrial genomes contain 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region. The lengths of the mitochondrial genomes are 15,253 bp to 15,812 bp, and the AT contents of the obtained mitogenomes indicate a strong AT bias, ranging from 75.8% to 78.5%. The start codons of all PCGs show that most start with a typical ATN (ATA/T/G/C) codon and less start with T/GTG; the stop codon TAA is frequently used, and TAG and a single T are less used. In Gargarini mitogenomes, all tRNA genes can be folded into the canonical cloverleaf secondary structure, except for trnaS1, which lacks a stable dihydrouridine (DHU) stem and is replaced by a simple loop. At the same time, the phylogenetic analysis of the tribe Gargarini based on sequence data of 13 PCGs from 18 treehopper species and four outgroups revealed that the 10 Gargarini species form a steady group with strong support and form a sister group with Leptocentrini, Hypsauchenini, Centrotini, and Leptobelini. Diversification within Gargarini is distinguished by a Later Cretaceous divergence that led to the rapid diversification of the species. Moreover, the ancestral state reconstructions analysis showed the absence of the suprahumeral horn, which was confirmed as the ancestor characteristic of the treehopper, which has evolved from simple to complex. Our results shed new light specifically on the molecular and phylogenetic evolution of the pronotum in Gargarini.


Assuntos
Genoma Mitocondrial , Hemípteros , Animais , Hemípteros/genética , Filogenia , RNA de Transferência/genética , RNA de Transferência/química , Códon de Terminação , RNA Ribossômico/genética , RNA Ribossômico/química
19.
Angiogenesis ; 24(1): 83-96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32920668

RESUMO

Vasculogenic mimicry (VM) formed by aggressive tumor cells to mimic vasculogenic networks plays an important role in the tumor malignancy of HCC. However, the pathogenesis underlying VM is complex and has not been fully defined. m6A is a common mRNA modification and has many biological effects. However, the relationship between m6A and VM remains unclear. In this research, we found that m6A methyltransferase METTL3 in HCC tissues was positively correlated with VM. The m6A level of mRNA significantly increased in 3D cultured cells treated with VEGFa and was related to VM formation. Transcriptome sequencing analysis of 3D cultured cells with knockdown Mettl3 showed that the Hippo pathway was involved in m6A-mediated VM formation. Further mechanism research indicated that the m6A modification of YAP1 mRNA affected the translation of YAP1 mRNA. In conclusion, m6A methylation plays a key role in VM formation in HCC. METTL3 and YAP1 could be potential therapeutic targets via impairing VM formation in anti-metastatic strategies.


Assuntos
Adenosina/análogos & derivados , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/metabolismo , Mimetismo Molecular , Proteínas Serina-Treonina Quinases/metabolismo , RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/metabolismo , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Via de Sinalização Hippo , Humanos , Neoplasias Hepáticas/genética , Metilação , Metiltransferases/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
20.
Amino Acids ; 53(8): 1197-1209, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34223992

RESUMO

Riboflavin is an essential micronutrient for normal cellular growth and function. Lack of dietary riboflavin is associated with an increased risk for esophageal squamous cell carcinoma (ESCC). Previous studies have identified that the human riboflavin transporter SLC52A3a isoform (encoded by SLC52A3) plays a prominent role in esophageal cancer cell riboflavin transportation. Furthermore, SLC52A3 gene single nucleotide polymorphisms rs3746804 (T>C, L267P) and rs3746803 (C >T, T278M) are associated with ESCC risk. However, whether SLC52A3a (p.L267P) and (p.T278M) act in riboflavin transportation in esophageal cancer cell remains inconclusive. Here, we constructed the full-length SLC52A3a protein fused to green fluorescent protein (GFP-SLC52A3a-WT and mutants L267P, T278M, and L267P/T278M). It was confirmed by immunofluorescence-based confocal microscopy that SLC52A3a-WT, L267P, T278M, and L267P/T278M expressed in cell membrane, as well as in a variety of intracellular punctate structures. The live cell confocal imaging showed that SLC52A3a-L267P and L267P/T278M increased the intracellular trafficking of SLC52A3a in ESCC cells. Fluorescence recovery after photobleaching of GFP-tagged SLC52A3a meant that intracellular trafficking of SLC52A3a-L267P and L267P/T278M was rapid dynamics process, leading to its stronger ability to transport riboflavin. Taken together, the above results indicated that the rs3746804 (p.L267P) polymorphism promoted intracellular trafficking of SLC52A3a and riboflavin transportation in ESCC cells.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Proteínas de Membrana Transportadoras/genética , Polimorfismo de Nucleotídeo Único , Riboflavina/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Exoma , Proteínas de Fluorescência Verde/genética , Humanos , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA