Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(30)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38354418

RESUMO

We present an experimental and computational investigation the Neodymium thickness dependence of the effective damping constant (αeff) inNi80Fe20/Neodymium (Py/Nd) bilayers. The computational results show that the magnetic damping is strongly dependent on the thickness of Nd, which is in agreement with experimental data. Self consistent solutions of the spin accumulation model and the local magnetisation were used in the simulations. It was not possible to obtain agreement with experiment under the assumption of an enhanced damping in a single Py monolayer. Instead, it was found that the enhanced damping due to spin pumping needed to be spread across two monolayers of Py. This is suggested to arise from interface mixing. Subsequently, the temperature dependence of the effective damping was investigated. It is found that, with increasing temperature, the influence of thermally-induced spin fluctuations on magnetic damping becomes stronger with increasing Nd thickness.

2.
J Phys Condens Matter ; 36(14)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157556

RESUMO

The power consumption of modern random access memory (RAM) has been a motivation for the development of low-power non-volatile magnetic RAM (MRAM). Based on a CoFeB/MgO magnetic tunnel junction, MRAM must satisfy high thermal stability and a low writing current while being scaled down to a sub-20 nm size to compete with the densities of current RAM technology. A recent development has been to exploit perpendicular shape anisotropy along the easy axis by creating tower structures, with the free layers' thickness (along the easy axis) being larger than its width. Here we use an atomistic model to explore the temperature dependent properties of thin cylindrical MRAM towers of 5 nm diameter while scaling down the free layer from 48 to 8 nm thick. We find thermal fluctuations are a significant driving force for the switching mechanism at operational temperatures by analysing the switching field distribution from hysteresis data. We find that a reduction of the free layer thickness below 18 nm rapidly loses shape anisotropy, and consequently stability, even at 0 K. Additionally, there is a change in the switching mechanism as the free layer is reduced to 8 nm. Coherent rotation is observed for the 8 nm free layer, while all taller towers demonstrate incoherent rotation via a propagated domain wall.

4.
Nanoscale Adv ; 6(16): 4207-4218, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39114136

RESUMO

Accurate knowledge of the heating performance of magnetic nanoparticles (MNPs) under AC magnetic fields is critical for the development of hyperthermia-mediated applications. Usually reported in terms of the specific loss power (SLP) obtained from the temperature variation (ΔT) vs. time (t) curve, such an estimate is subjected to a huge uncertainty. Thus, very different SLP values are reported for the same particles when measured on different equipment/in different laboratories. This lack of control clearly hampers the further development of nanoparticle-mediated heat-triggered technologies. Here, we report a device-independent approach to calculate the SLP value of a suspension of magnetic nanoparticles: the SLP is obtained from the analysis of the peak at the AC magnetic field on/off switch of the ΔT(time) curve. The measurement procedure, which itself constitutes a change of paradigm within the field, is based on the heat diffusion equation, which is still valid when the assumptions of Newton's law of cooling are not applicable, as (i) it corresponds to the ideal scenario in which the temperature profiles of the system during heating and cooling are the same; and (ii) it diminishes the role of coexistence of various heat dissipation channels. Such an approach is supported by theoretical and computational calculations to increase the reliability and reproducibility of SLP determination. Furthermore, the new methodological approach is experimentally confirmed, by magnetic hyperthermia experiments performed using 3 different devices located in 3 different laboratories. Furthermore, the application of this peak analysis method (PAM) to a rapid succession of stimulus on/off switches which results in a zigzag-like ΔT(t), which we term the zigzag protocol, allows evaluation of possible variations of the SLP values with time or temperature.

5.
Adv Mater ; 36(21): e2311643, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407359

RESUMO

Ultrafast manipulation of magnetic order has challenged the understanding of the fundamental and dynamic properties of magnetic materials. So far single-shot magnetic switching has been limited to ferrimagnetic alloys, multilayers, and designed ferromagnetic (FM) heterostructures. In FM/antiferromagnetic (AFM) bilayers, exchange bias (He) arises from the interfacial exchange coupling between the two layers and reflects the microscopic orientation of the antiferromagnet. Here the possibility of single-shot switching of the antiferromagnet (change of the sign and amplitude of He) with a single femtosecond laser pulse in IrMn/CoGd bilayers is demonstrated. The manipulation is demonstrated in a wide range of fluences for different layer thicknesses and compositions. Atomistic simulations predict ultrafast switching and recovery of the AFM magnetization on a timescale of 2 ps. The results provide the fastest and the most energy-efficient method to set the exchange bias and pave the way to potential applications for ultrafast spintronic devices.

6.
Nat Commun ; 15(1): 4958, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862508

RESUMO

An antiferromagnet emits spin currents when time-reversal symmetry is broken. This is typically achieved by applying an external magnetic field below and above the spin-flop transition or by optical pumping. In this work we apply optical pump-THz emission spectroscopy to study picosecond spin pumping from metallic FeRh as a function of temperature. Intriguingly we find that in the low-temperature antiferromagnetic phase the laser pulse induces a large and coherent spin pumping, while not crossing into the ferromagnetic phase. With temperature and magnetic field dependent measurements combined with atomistic spin dynamics simulations we show that the antiferromagnetic spin-lattice is destabilised by the combined action of optical pumping and picosecond spin-biasing by the conduction electron population, which results in spin accumulation. We propose that the amplitude of the effect is inherent to the nature of FeRh, particularly the Rh atoms and their high spin susceptibility. We believe that the principles shown here could be used to produce more effective spin current emitters. Our results also corroborate the work of others showing that the magnetic phase transition begins on a very fast picosecond timescale, but this timescale is often hidden by measurements which are confounded by the slower domain dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA