Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; : e2307275, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050946

RESUMO

The successful utilization of silicon nanoparticles (Si-NPs) to enhance the performance of Li-ion batteries (LIBs) has demonstrated their potential as high-capacity anode materials for next-generation LIBs. Additionally, the availability and relatively low cost of sodium resources have a significant influence on developing Na-ion batteries (SIBs). Despite the unique properties of Si-NPs as SIBs anode material, limited study has been conducted on their application in these batteries. However, the knowledge gained from using Si-NPs in LIBs can be applied to develop Si-based anodes in SIBs by employing similar strategies to overcome their drawbacks. In this review, a brief history of Si-NPs' usage in LIBs is provided and discuss the strategies employed to overcome the challenges, aiming to inspire and offer valuable insights to guide future research endeavors.

2.
Faraday Discuss ; 222(0): 332-349, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32101206

RESUMO

The functionalisation of silicon nanoparticles with a terminal thiocyanate group, producing isothiocyanate-capped silicon nanoparticles (ITC-capped SiNPs) has been successfully attained. The procedure for the synthesis is a two-step process that occurs via thermally induced hydrosilylation of hydrogen terminated silicon nanoparticles (H-SiNPs) and further reaction with potassium thiocyanate (KSCN). The synthesis was confirmed by Fourier transform infrared (FTIR) spectroscopy and X-Ray photoelectron spectroscopy (XPS). At the same time, the internalisation and the cytotoxicity of the ITC-capped SiNPs in vitro were assessed in two cell lines: Caco-2, human colorectal cancer cells and CCD-841, human colon "normal" cells. The results showed that above concentrations of 15 µg ml-1, the cell viability of both cell lines was depleted significantly when treated with ITC SiNPs, particularly over a 48 hour period, to approximately 20% cell viability at the highest treatment concentration (70 µg ml-1). Flow cytometry was employed to determine cellular uptake in Caco-2 cells treated with ITC SiNPs. It was observed that at lower SiNP concentrations, uptake efficiency was significantly improved for time periods under 12 hours; overall it was noted that cellular uptake was positively dependent on the period of incubation and the temperature of incubation. As such, it was concluded that the mechanism of uptake of ITC SiNPs was through endocytosis. Synchrotron FTIR spectroscopy, by means of line spectral analysis and IR imaging, provided further evidence to suggest the internalisation of ITC SiNPs displays a strong localisation, with an affinity for the nucleus of treated Caco-2 cells.


Assuntos
Citotoxinas/farmacologia , Isotiocianatos/farmacologia , Nanopartículas/química , Silício/química , Células CACO-2 , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/síntese química , Citotoxinas/metabolismo , Relação Dose-Resposta a Droga , Endocitose/fisiologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Hidrogenação , Hidrólise , Isotiocianatos/química , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica
3.
Breast Cancer Res Treat ; 165(3): 531-543, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28695300

RESUMO

PURPOSE: Combining molecular therapies with chemotherapy may offer an improved clinical outcome for chemoresistant tumours. Sphingosine-1-phosphate (S1P) receptor antagonist and sphingosine kinase 1 (SK1) inhibitor FTY720 (FTY) has promising anticancer properties, however, it causes systemic lymphopenia which impairs its use in cancer patients. In this study, we developed a nanoparticle (NP) combining docetaxel (DTX) and FTY for enhanced anticancer effect, targeted tumour delivery and reduced systemic toxicity. METHODS: Docetaxel, FTY and glucosamine were covalently conjugated to poly(lactic-co-glycolic acid) (PLGA). NPs were characterised by dynamic light scattering and electron microscopy. The cellular uptake, cytotoxicity and in vivo antitumor efficacy of CNPs were evaluated. RESULTS: We show for the first time that in triple negative breast cancer cells FTY provides chemosensitisation to DTX, allowing a four-fold reduction in the effective dose. We have encapsulated both drugs in PLGA complex NPs (CNPs), with narrow size distribution of ~ 100 nm and excellent cancer cell uptake providing sequential, sustained release of FTY and DTX. In triple negative breast cancer cells and mouse breast cancer models, CNPs had similar efficacy to systemic free therapies, but allowed an effective drug dose reduction. Application of CNPs has significantly reversed chemotherapy side effects such as weight loss, liver toxicity and, most notably, lymphopenia. CONCLUSIONS: We show for the first time the DTX chemosensitising effects of FTY in triple negative breast cancer. We further demonstrate that encapsulation of free drugs in CNPs can improve targeting, provide low off-target toxicity and most importantly reduce FTY-induced lymphopenia, offering potential therapeutic use of FTY in clinical cancer treatment.


Assuntos
Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Cloridrato de Fingolimode/administração & dosagem , Linfopenia/induzido quimicamente , Nanopartículas , Taxoides/administração & dosagem , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Docetaxel , Feminino , Cloridrato de Fingolimode/efeitos adversos , Humanos , Camundongos , Metástase Neoplásica , Estadiamento de Neoplasias , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Small ; 13(20)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28371327

RESUMO

MnO as anode materials has received particular interest owing to its high specific capacity, abundant resources, and low cost. However, serious problems related to the large volume change (>170%) during the lithiation/delithiation processes still results in poor rate capability and fast capacity decay. With homogenous crystals of MnO grown in the network of carbon nanofibers (CNF), binding effect of CNF can effectively weaken the volume change of MnO during cycles. In this work, a CNF/MnO flexible electrode for lithium-ion batteries is designed and synthesized. The CNF play the roles of conductive channel and elastically astricting MnO particles during lithiation/delithiation. CNF/MnO as binder-free anode delivers specific capacity of 983.8 mAh g-1 after 100th cycle at a current density of 0.2 A g-1 , and 600 mAh g-1 at 1 A g-1 which are much better than those of pure MnO and pure CNF. The ex-situ morphologies clearly show the relative volume change of MnO/CNF as anode under various discharging and charging times. CNF can elastically buffer the volume change of MnO during charging/discharging cycles. A facile and scalable approach for synthesizing a novel flexible binder-free anode of CNF/MnO for potential application in highly reversible lithium storage devices is presented.

6.
Inorg Chem ; 54(15): 7368-80, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26173067

RESUMO

Cadmium selenide quantum dots of 2.2-2.3 nm diameter were prepared by phosphorus-free methods using oleic acid as stabilizing surface ligand. Ligand exchange monitored quantitatively by (1)H NMR spectroscopy gave an estimate of 30-38 monodentate ligands per nanocrystal, with a ligand density of 1.8-2.3 nm(-2). The extent of ligand exchange with macrocycles carrying one or more functional groups was investigated, with the aim of producing nanocrystal-macrocycle conjugates with a limited number of coligands. Metal-free porphyrins are able to sequester the Cd(2+) ions from the Cd(oleate)2 outer layer of the nanocrystals. Zinc porphyrin complexes carrying one carboxylate function displace oleate efficiently to give porphyrin/CdSe composites with porphyrins stacked upright on the crystal surface. Porphyrins with four potential ligating sites are able to bind to the crystal surface only if the donors are at the end of sufficiently long and flexible tethers. High-dilution methods allowed the synthesis and isolation of well-defined composites of composition [CdSe{porphyrin}2], where porphyrin = 5,10,15,20-tetrakis{3-(carboxy-n-alkyloxy)phenyl}porphyrinato zinc (n = 5 or 10) and 5,10,15,20-tetrakis{3-(11-undecenyloxythiol)phenyl}porphyrinato zinc. Comparison of the composition data obtained by (1)H NMR spectroscopy with luminescence quenching behavior suggests a dependence of quenching efficiency on the tether length. Luminescence quenching was also observed for porphyrins that, according to (1)H NMR results, do not undergo surface ligand exchange.

7.
Faraday Discuss ; 176: 349-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25406542

RESUMO

Silicon is a promising alternative to current thermoelectric materials (Bi(2)Te(3)). Silicon nanoparticle based materials show especially low thermal conductivities due to their high number of interfaces, which increases the observed phonon scattering. The major obstacle with these materials is maintaining high electrical conductivity. Surface functionalization with phenylacetylene shows an electrical conductivity of 18.1 S m(-1) and Seebeck coefficient of 3228.8 µV K(-1) as well as maintaining a thermal conductivity of 0.1 W K(-1) m(-1). This gives a ZT of 0.6 at 300 K which is significant for a bulk silicon based material and is similar to that of other thermoelectric materials such as Mg(2)Si, PbTe and SiGe alloys.

8.
Chemistry ; 19(27): 8884-99, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23681561

RESUMO

The reactions of MCl5 or MOCl3 with imidazole-based pro-ligand L(1)H, 3,5-tBu2-2-OH-C6H2-(4,5-Ph2-1H-)imidazole, or oxazole-based ligand L(2)H, 3,5-tBu2-2-OH-C6H2 (1H-phenanthro[9,10-d])oxazole, following work-up, afforded octahedral complexes [MX(L(1,2))], where MX=NbCl4 (L(1), 1a; L(2), 2a), [NbOCl2(NCMe)] (L(1), 1b; L(2), 2b), TaCl4 (L(1), 1c; L(2), 2c), or [TaOCl2(NCMe)] (L(1), 1d). The treatment of α-diimine ligand L(3), (2,6-iPr2C6H3N=CH)2, with [MCl4(thf)2] (M=Nb, Ta) afforded [MCl4(L(3))] (M=Nb, 3a; Ta, 3b). The reaction of [MCl3(dme)] (dme=1,2-dimethoxyethane; M=Nb, Ta) with bis(imino)pyridine ligand L(4), 2,6-[2,6-iPr2C6H3N=(Me)C]2C5H3N, afforded known complexes of the type [MCl3(L(4))] (M=Nb, 4a; Ta, 4b), whereas the reaction of 2-acetyl-6-iminopyridine ligand L(5), 2-[2,6-iPr2C6H3N=(Me)C]-6-Ac-C5H3N, with the niobium precursor afforded the coupled product [({2-Ac-6-(2,6-iPr2C6H3N=(Me)C)C5H3N}NbOCl2)2] (5). The reaction of MCl5 with Schiff-base pro-ligands L(6)H-L(10)H, 3,5-(R(1))2-2-OH-C6H2CH=N(2-OR(2)-C6H4), (L(6)H: R(1)=tBu, R(2)=Ph; L(7)H: R(1)=tBu, R(2)=Me; L(8)H: R(1)=Cl, R(2)=Ph; L(9)H: R(1)=Cl, R(2)=Me; L(10)H: R(1)=Cl, R(2)=CF3) afforded [MCl4(L(6-10))] complexes (M=Nb, 6a-10a; M=Ta, 6b-9b). In the case of compound 8b, the corresponding zwitterion was also synthesised, namely [Ta(-)Cl5(L(8)H)(+)]·MeCN (8c). Unexpectedly, the reaction of L(7)H with TaCl5 at reflux in toluene led to the removal of the methyl group and the formation of trichloride 7c [TaCl3(L(7-Me))]; conducting the reaction at room temperature led to the formation of the expected methoxy compound (7b). Upon activation with methylaluminoxane (MAO), these complexes displayed poor activities for the homogeneous polymerisation of ethylene. However, the use of chloroalkylaluminium reagents, such as dimethylaluminium chloride (DMAC) and methylaluminium dichloride (MADC), as co-catalysts in the presence of the reactivator ethyl trichloroacetate (ETA) generated thermally stable catalysts with, in the case of niobium, catalytic activities that were two orders of magnitude higher than those previously observed. The effects of steric hindrance and electronic configuration on the polymerisation activity of these tantalum and niobium pre-catalysts were investigated. Spectroscopic studies ((1)H NMR, (13)C NMR and (1)H-(1)H and (1)H-(13)C correlations) on the reactions of compounds 4a/4b with either MAO(50) or AlMe3/[CPh3](+)[B(C6F5)4](-) were consistent with the formation of a diamagnetic cation of the form [L(4)AlMe2](+) (MAO(50) is the product of the vacuum distillation of commercial MAO at +50 °C and contains only 1 mol% of Al in the form of free AlMe3). In the presence of MAO, this cationic aluminium complex was not capable of initiating the ROMP (ring opening metathesis polymerisation) of norbornene, whereas the 4a/4b systems with MAO(50) were active. A parallel pressure reactor (PPR)-based homogeneous polymerisation screening by using pre-catalysts 1b, 1c, 2a, 3a and 6a, in combination with MAO, revealed only moderate-to-good activities for the homo-polymerisation of ethylene and the co-polymerisation of ethylene/1-hexene. The molecular structures are reported for complexes 1a-1c, 2b, 5, 6a, 6b, 7a, 8a and 8c.

9.
Materials (Basel) ; 16(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687583

RESUMO

Silicon has been proven to be one of the most promising anode materials for the next generation of lithium-ion batteries for application in batteries, the Si anode should have high capacity and must be industrially scalable. In this study, we designed and synthesised a hollow structure to meet these requirements. All the processes were carried out without special equipment. The Si nanoparticles that are commercially available were used as the core sealed inside a TiO2 shell, with rationally designed void space between the particles and shell. The Si@TiO2 were characterised using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The optimised hollow-structured silicon nanoparticles, when used as the anode in a lithium-ion battery, exhibited a high reversible specific capacity over 630 mAhg-1, much higher than the 370 mAhg-1 from the commercial graphite anodes. This excellent electrochemical property of the nanoparticles could be attributed to their optimised phase and unique hollow nanostructure.

10.
RSC Adv ; 11(13): 7280-7293, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423269

RESUMO

Rheumatoid arthritis (RA) is a common worldwide chronic autoimmune disease, characterised by synovial hyperplasia, inflammatory cell infiltration, pannus formation and destruction of articular cartilage and bone matrix. It is one of the most common forms of osteoarthritis bestowing high rates of both disability and death. Increasing attention has been paid to the use of natural medicines and natural products in the treatment of RA and patients' acceptance has increased year by year because of their high efficacy and safety. Flavonoids are a group of important secondary metabolites occurring in many plants which have rich biological activities such as anti-rheumatic, vasodilator, and anti-tumor effects. Many successful medical treatments of RA appear to be attributable to the application of flavonoids. Quercetin, a representative active member of the flavonoid family, is found abundantly in many plants, e.g. apples, berries, cabbages, onions, and ginkgo. In recent years, progress has been made in the research of its anti-rheumatoid effects which indicate that it is potentially a noteworthy prodrug for the treatment of RA. However, the poor solubility of quercetin affects its bioavailability and clinical efficacy. This review aims to provide an up to date summary of the biological effects and mechanism of action of quercetin for the treatment of RA, and the research progress made towards nano formulations of quercetin to improve its solubility and efficacy.

11.
Nanomaterials (Basel) ; 10(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485843

RESUMO

As one of the new types of functional materials, nano-sized composite energetic materials (nano-CEMs) possess many advantages and broad application prospects in the research field of explosives and propellants. The recent progress in the preparation and performance characterization of Al-based nano-CEMs has been reviewed. The preparation methods and properties of Al-based nano-CEMs are emphatically analyzed. Special emphasis is focused on the improved performances of Al-based nano-CEMs, which are different from those of conventional micro-sized composite energetic materials (micro-CEMs), such as thermal decomposition and hazardous properties. The existing problems and challenges for the future work on Al-based nano-CEMs are discussed.

12.
Small ; 5(2): 221-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19058285

RESUMO

Nanocrystals of various inorganic materials are being considered for application in the life sciences as fluorescent labels and for such therapeutic applications as drug delivery or targeted cell destruction. The potential applications of the nanoparticles are critically compromised due to the well-documented toxicity and lack of understanding about the mechanisms involved in the intracellular internalization. Here intracellular internalization and toxicity of alkyl-capped silicon nanocrystals in human neoplastic and normal primary cells is reported. The capped nanocrystals lack cytotoxicity, and there is a marked difference in the rate and extent of intracellular accumulation of the nanoparticles between human cancerous and non-cancerous primary cells, the rate and extent being higher in the malignant cells compared to normal human primary cells. The exposure of the cells to the alkyl-capped nanocrystals demonstrates no evidence of in vitro cytotoxicity when assessed by cell morphology, apoptosis, and cell viability assays. The internalization of the nanocrystals by Hela and SW1353 cells is almost completely blocked by the pinocytosis inhibitors filipin, cytochalasin B, and actinomycin D. The internalization process is not associated with any surface change in the nanoparticles, as their luminescence spectrum is unaltered upon transport into the cytosol. The observed dramatic difference in the rate and extent of internalization of the nanocrystals between malignant and non-malignant cells therefore offers potential application in the management of human neoplastic conditions.


Assuntos
Colesterol/metabolismo , Coloides/química , Endocitose , Nanopartículas/química , Pontos Quânticos , Silício/química , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Células HeLa , Humanos , Microscopia Confocal , Espectrofotometria Ultravioleta , Propriedades de Superfície
15.
J Biomed Res ; 32(2): 91-106, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-28866655

RESUMO

Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

16.
Sci Rep ; 8(1): 1084, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348534

RESUMO

Allyl isothiocyanate (AITC), a dietary phytochemical in some cruciferous vegetables, exhibits promising anticancer activities in many cancer models. However, previous data showed AITC to have a biphasic effect on cell viability, DNA damage and migration in human hepatoma HepG2 cells. Moreover, in a 3D co-culture of HUVEC with pericytes, it inhibited tube formation at high doses but promoted this at low doses, which confirmed its biphasic effect on angiogenesis. siRNA knockdown of Nrf2 and glutathione inhibition abolished the stimulation effect of AITC on cell migration and DNA damage. The biological activity of a novel AITC-conjugated silicon quantum dots (AITC-SiQDs) has been investigated for the first time. AITC-SiQDs showed similar anti-cancer properties to AITC at high doses while avoiding the low doses stimulation effect. In addition, AITC-SiQDs showed a lower and long-lasting activation of Nrf2 translocation into nucleus which correlated with their levels of cellular uptake, as detected by the intrinsic fluorescence of SiQDs. ROS production could be one of the mechanisms behind the anti-cancer effect of AITC-SiQDs. These data provide novel insights into the biphasic effect of AITC and highlight the application of nanotechnology to optimize the therapeutic potential of dietary isothiocyanates in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Isotiocianatos/farmacologia , Pontos Quânticos , Silício , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Isotiocianatos/química , Fator 2 Relacionado a NF-E2/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Silício/química
17.
RSC Adv ; 8(5): 2552-2560, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35541495

RESUMO

Microigniters play an important role for the reliable initiation of micro explosive devices. However, the microigniter is still limited by the low out-put energy to realize high reliability and safety. Integration of energetic materials with microigniters is an effective method to enhance the ignition ability. In this work, a Al/Co3O4 nanothermite film with a three-dimensionally ordered macroporous structure was prepared by the deposition of nanoscale Al layers using magnetron sputtering on Co3O4 skeletons that are synthesized using an inverse template method. Both the uniform structure and nanoscale contact between the Al layers and the Co3O4 skeletons lead to an excellent exothermicity. In order to investigate the ignition properties, a micro-energetic igniter has been fabricated by the integration of the Al/Co3O4 nanothermite film with a semiconductor bridge microigniter. The thermite reactions between the nanoscale Al layer and the Co3O4 skeleton extensively promote the intensity of the spark, the length in duration and the size of the area, which greatly enhance the ignition reliability of the micro-energetic igniter. Moreover, this novel design enables the micro-energetic igniter to fire the pyrotechnic Zr/Pb3O4 in a gap of 3.7 mm by capacitor discharge stimulation and to keep the intrinsic instantaneity high and firing energy low. The realization of gap ignition will surely improve the safety level of initiating systems and have a significant impact on the design and application of explosive devices.

18.
Sci Rep ; 7: 40224, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28057940

RESUMO

In this work the chalcopyrite CuIn3Se5-xTex (x = 0~0.5) with space group through isoelectronic substitution of Te for Se have been prepared, and the crystal structure dilation has been observed with increasing Te content. This substitution allows the anion position displacement ∆u = 0.25-u to be zero at x ≈ 0.15. However, the material at x = 0.1 (∆u = 0.15 × 10-3), which is the critical Te content, presents the best thermoelectric (TE) performance with dimensionless figure of merit ZT = 0.4 at 930 K. As x value increases from 0.1, the quality factor B, which informs about how large a ZT can be expected for any given material, decreases, and the TE performance degrades gradually due to the reduction in nH and enhancement in κL. Combining with the ZTs from several chalcopyrite compounds, it is believable that the best thermoelectric performance can be achieved at a certain ∆u value (∆u ≠ 0) for a specific space group if their crystal structures can be engineered.

19.
Sci Rep ; 7(1): 5901, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724986

RESUMO

Many prostate cancers relapse after initial chemotherapy treatment. Combining molecular and chemotherapy together with encapsulation of drugs in nanocarriers provides effective drug delivery and toxicity reduction. We developed core shell lipid-polymer hybrid nanoparticles (CSLPHNPs) with poly (lactic-co-glycolic acid) (PLGA) core and lipid layer containing docetaxel and clinically used inhibitor of sphingosine kinase 1 (SK1) FTY720 (fingolimod). We show for the first time that FTY720 (both free and in CSLPHNPs) re-sensitizes castrate resistant prostate cancer cells and tumors to docetaxel, allowing a four-fold reduction in effective dose. Our CSLPHNPs showed high serum stability and a long shelf life. CSLPHNPs demonstrated a steady uptake by tumor cells, sustained intracellular drug release and in vitro efficacy superior to free therapies. In a mouse model of human prostate cancer, CSLPHNPs showed excellent tumor targeting and significantly lower side effects compared to free drugs, importantly, reversing lymphopenia induced by FTY720. Overall, we demonstrate that nanoparticle encapsulation can improve targeting, provide low off-target toxicity and most importantly reduce FTY720-induced lymphopenia, suggesting its potential use in clinical cancer treatment.


Assuntos
Docetaxel/uso terapêutico , Lipídeos/química , Terapia de Alvo Molecular , Nanopartículas/química , Neoplasias da Próstata/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Docetaxel/farmacologia , Liberação Controlada de Fármacos , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Nanopartículas/ultraestrutura , Metástase Neoplásica , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
20.
ACS Appl Mater Interfaces ; 9(19): 16243-16251, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28445645

RESUMO

Oxide materials with redox capability have attracted worldwide attentions in many applications. Introducing defects into crystal lattice is an effective method to modify and optimize redox capability of oxides as well as their catalytic performance. However, the relationship between intrinsic characteristics of defects and properties of oxides has been rarely reported. Herein, we report a facile strategy to introduce defects by doping a small amount of Ni atoms (∼1.8 at. %) into ceria lattice at atomic level through the effect of microstructure of crystal on the redox property of ceria. Amazingly, a small amount of single Ni atom-doped ceria has formed a homogeneous solid solution with uniform lotuslike morphology. It performs an outstanding catalytic performance of a reduced T50 of CO oxidation at 230 °C, which is 135 °C lower than that of pure CeO2 (365 °C). This is largely attributed to defects such as lattice distortion, crystal defects and elastic strain induced by Ni dopants. The DFT calculation has revealed that the electron density distribution of oxygen ions near Ni dopant, the reduced formation energy of oxygen vacancy originated from local chemical effect caused by local distortion after Ni doping. These differences have a great effect on increasing the concentration of oxygen vacancies and enhancing the migration of lattice oxygen from bulk to a surface which is closely related to optimized redox properties. As a result, oxygen storage capacity and the associated catalytic reactivity has been largely increased. We have clearly demonstrated the change of crystal lattice and the charge distribution effectively modify its chemical and physical properties at the atomic scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA