Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 144(1): 117-121, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38527216

RESUMO

ABSTRACT: Intravenous injection of excess apotransferrin enhances dietary iron absorption in mice and triggers accumulation of plasma non-transferrin-bound iron. Injected fluorescent-labeled transferrin colocalizes with lamina propria macrophages, consistent with the recently proposed iron absorption checkpoint involving macrophage-mediated transferrin degradation.


Assuntos
Apoproteínas , Ferro da Dieta , Transferrina , Animais , Transferrina/metabolismo , Camundongos , Ferro da Dieta/metabolismo , Ferro da Dieta/farmacocinética , Ferro da Dieta/administração & dosagem , Apoproteínas/metabolismo , Macrófagos/metabolismo , Absorção Intestinal , Ferro/metabolismo , Camundongos Endogâmicos C57BL
2.
Blood ; 141(3): 271-284, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36351237

RESUMO

Homeostatic adaptation to systemic iron overload involves transcriptional induction of bone morphogenetic protein 6 (BMP6) in liver sinusoidal endothelial cells (LSECs). BMP6 is then secreted to activate signaling of the iron hormone hepcidin (HAMP) in neighboring hepatocytes. To explore the mechanism of iron sensing by LSECs, we generated TfrcTek-Cre mice with endothelial cell-specific ablation of transferrin receptor 1 (Tfr1). We also used control Tfrcfl/fl mice to characterize the LSEC-specific molecular responses to iron using single-cell transcriptomics. TfrcTek-Cre animals tended to have modestly increased liver iron content (LIC) compared with Tfrcfl/fl controls but expressed physiological Bmp6 and Hamp messenger RNA (mRNA). Despite a transient inability to upregulate Bmp6, they eventually respond to iron challenges with Bmp6 and Hamp induction, yet occasionally to levels slightly lower relative to LIC. High dietary iron intake triggered the accumulation of serum nontransferrin bound iron (NTBI), which significantly correlated with liver Bmp6 and Hamp mRNA levels and elicited more profound alterations in the LSEC transcriptome than holo-transferrin injection. This culminated in the robust induction of Bmp6 and other nuclear factor erythroid 2-related factor 2 (Nrf2) target genes, as well as Myc target genes involved in ribosomal biogenesis and protein synthesis. LSECs and midzonal hepatocytes were the most responsive liver cells to iron challenges and exhibited the highest expression of Bmp6 and Hamp mRNAs, respectively. Our data suggest that during systemic iron overload, LSECs internalize NTBI, which promotes oxidative stress and thereby transcriptionally induces Bmp6 via Nrf2. Tfr1 appears to contribute to iron sensing by LSECs, mostly under low iron conditions.


Assuntos
Sobrecarga de Ferro , Ferro , Camundongos , Animais , Ferro/metabolismo , Transferrina/metabolismo , Células Endoteliais/metabolismo , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Fator 2 Relacionado a NF-E2 , Hepatócitos/metabolismo , Fígado/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , RNA Mensageiro/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675185

RESUMO

The survival, growth, and virulence of Leishmania spp., a group of protozoan parasites, depends on the proper access and regulation of iron. Macrophages, Leishmania's host cell, may divert iron traffic by reducing uptake or by increasing the efflux of iron via the exporter ferroportin. This parasite has adapted by inhibiting the synthesis and inducing the degradation of ferroportin. To study the role of iron in leishmaniasis, we employed Hjv-/- mice, a model of hemochromatosis. The disruption of hemojuvelin (Hjv) abrogates the expression of the iron hormone hepcidin. This allows unrestricted iron entry into the plasma from ferroportin-expressing intestinal epithelial cells and tissue macrophages, resulting in systemic iron overload. Mice were injected with Leishmania major in hind footpads or intraperitoneally. Compared with wild-type controls, Hjv-/- mice displayed transient delayed growth of L. major in hind footpads, with a significant difference in parasite burden 4 weeks post-infection. Following acute intraperitoneal exposure to L. major, Hjv-/- peritoneal cells manifested increased expression of inflammatory cytokines and chemokines (Il1b, Tnfa, Cxcl2, and Ccl2). In response to infection with L. infantum, the causative agent of visceral leishmaniasis, Hjv-/- and control mice developed similar liver and splenic parasite burden despite vastly different tissue iron content and ferroportin expression. Thus, genetic iron overload due to hemojuvelin deficiency appears to mitigate the early development of only cutaneous leishmaniasis.


Assuntos
Hemocromatose , Leishmaniose Cutânea , Animais , Camundongos , Proteínas Ligadas por GPI/metabolismo , Hemocromatose/genética , Hemocromatose/metabolismo , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/metabolismo , Fígado/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982241

RESUMO

Hepcidin is a liver-derived hormone that controls systemic iron traffic. It is also expressed in the heart, where it acts locally. We utilized cell and mouse models to study the regulation, expression, and function of cardiac hepcidin. Hepcidin-encoding Hamp mRNA was induced upon differentiation of C2C12 cells to a cardiomyocyte-like phenotype and was not further stimulated by BMP6, BMP2, or IL-6, the major inducers of hepatic hepcidin. The mRNAs encoding hepcidin and its upstream regulator hemojuvelin (Hjv) are primarily expressed in the atria of the heart, with ~20-fold higher Hamp mRNA levels in the right vs. left atrium and negligible expression in the ventricles and apex. Hjv-/- mice, a model of hemochromatosis due to suppression of liver hepcidin, exhibit only modest cardiac Hamp deficiency and minor cardiac dysfunction. Dietary iron manipulations did not significantly affect cardiac Hamp mRNA in the atria of wild-type or Hjv-/- mice. Two weeks following myocardial infarction, Hamp was robustly induced in the liver and heart apex but not atria, possibly in response to inflammation. We conclude that cardiac Hamp is predominantly expressed in the right atrium and is partially regulated by Hjv; however, it does not respond to iron and other inducers of hepatic hepcidin.


Assuntos
Hemocromatose , Ferro , Camundongos , Animais , Ferro/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hemocromatose/genética , Hemocromatose/metabolismo , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Fígado/metabolismo , Átrios do Coração/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo
5.
Blood ; 133(4): 344-355, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30538134

RESUMO

Transferrin receptor 1 (Tfr1) mediates uptake of circulating transferrin-bound iron to developing erythroid cells and other cell types. Its critical physiological function is highlighted by the embryonic lethal phenotype of Tfr1-knockout (Tfrc-/-) mice and the pathologies of several tissue-specific knockouts. We generated TfrcAlb-Cre mice bearing hepatocyte-specific ablation of Tfr1 to explore implications in hepatocellular and systemic iron homeostasis. TfrcAlb-Cre mice are viable and do not display any apparent liver pathology. Nevertheless, their liver iron content (LIC) is lower compared with that of control Tfrcfl/fl littermates as a result of the reduced capacity of Tfr1-deficient hepatocytes to internalize iron from transferrin. Even though liver Hamp messenger RNA (mRNA) and serum hepcidin levels do not differ between TfrcAlb-Cre and Tfrcfl/fl mice, Hamp/LIC and hepcidin/LIC ratios are significantly higher in the former. Importantly, this is accompanied by modest hypoferremia and microcytosis, and it predisposes TfrcAlb-Cre mice to iron-deficiency anemia. TfrcAlb-Cre mice appropriately regulate Hamp expression following dietary iron manipulations or holo-transferrin injection. Holo-transferrin also triggers proper induction of Hamp mRNA, ferritin, and Tfr2 in primary TfrcAlb-Cre hepatocytes. We further show that these cells can acquire 59Fe from 59Fe-transferrin, presumably via Tfr2. We conclude that Tfr1 is redundant for basal hepatocellular iron supply but essential for fine-tuning hepcidin responses according to the iron load of hepatocytes. Our data are consistent with an inhibitory function of Tfr1 on iron signaling to hepcidin via its interaction with Hfe. Moreover, they highlight hepatocellular Tfr1 as a link between cellular and systemic iron-regulatory pathways.


Assuntos
Antígenos CD/metabolismo , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Homeostase , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Anemia Ferropriva/patologia , Animais , Ferritinas/metabolismo , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Marcação de Genes , Hepatócitos/efeitos dos fármacos , Hepcidinas/genética , Homeostase/efeitos dos fármacos , Integrases/metabolismo , Ferro da Dieta/farmacologia , Camundongos Endogâmicos C57BL , Receptores da Transferrina/deficiência , Transferrina/metabolismo
6.
Blood ; 132(17): 1829-1841, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30213871

RESUMO

Systemic iron balance is controlled by hepcidin, a liver hormone that limits iron efflux to the bloodstream by promoting degradation of the iron exporter ferroportin in target cells. Iron-dependent hepcidin induction requires hemojuvelin (HJV), a bone morphogenetic protein (BMP) coreceptor that is disrupted in juvenile hemochromatosis, causing dramatic hepcidin deficiency and tissue iron overload. Hjv-/- mice recapitulate phenotypic hallmarks of hemochromatosis but exhibit blunted hepcidin induction following lipopolysaccharide (LPS) administration. We show that Hjv-/- mice fail to mount an appropriate hypoferremic response to acute inflammation caused by LPS, the lipopeptide FSL1, or Escherichia coli infection because residual hepcidin does not suffice to drastically decrease macrophage ferroportin levels. Hfe-/- mice, a model of milder hemochromatosis, exhibit almost wild-type inflammatory hepcidin expression and associated effects, whereas double Hjv-/-Hfe-/- mice phenocopy single Hjv-/- counterparts. In primary murine hepatocytes, Hjv deficiency does not affect interleukin-6 (IL-6)/Stat, and only slightly inhibits BMP2/Smad signaling to hepcidin; however, it severely impairs BMP6/Smad signaling and thereby abolishes synergism with the IL-6/Stat pathway. Inflammatory induction of hepcidin is suppressed in iron-deficient wild-type mice and recovers after the animals are provided overnight access to an iron-rich diet. We conclude that Hjv is required for inflammatory induction of hepcidin and controls the acute hypoferremic response by maintaining a threshold of Bmp6/Smad signaling. Our data highlight Hjv as a potential pharmacological target against anemia of inflammation.


Assuntos
Hepatócitos/metabolismo , Hepcidinas/metabolismo , Inflamação/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Animais , Proteína Morfogenética Óssea 6/metabolismo , Proteínas Ligadas por GPI , Proteína da Hemocromatose , Sobrecarga de Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo
7.
Nutrients ; 15(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299408

RESUMO

Dietary iron assimilation is critical for health and essential to prevent iron-deficient states and related comorbidities, such as anemia. The bioavailability of iron is generally low, while its absorption and metabolism are tightly controlled to satisfy metabolic needs and prevent toxicity of excessive iron accumulation. Iron entry into the bloodstream is limited by hepcidin, the iron regulatory hormone. Hepcidin deficiency due to loss-of-function mutations in upstream gene regulators causes hereditary hemochromatosis, an endocrine disorder of iron overload characterized by chronic hyperabsorption of dietary iron, with deleterious clinical complications if untreated. The impact of high dietary iron intake and elevated body iron stores in the general population is not well understood. Herein, we summarize epidemiological data suggesting that a high intake of heme iron, which is abundant in meat products, poses a risk factor for metabolic syndrome pathologies, cardiovascular diseases, and some cancers. We discuss the clinical relevance and potential limitations of data from cohort studies, as well as the need to establish causality and elucidate molecular mechanisms.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Humanos , Ferro/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro da Dieta , Sobrecarga de Ferro/complicações , Hemocromatose/genética
8.
Elife ; 112022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066082

RESUMO

The iron hormone hepcidin is transcriptionally activated by iron or inflammation via distinct, partially overlapping pathways. We addressed how iron affects inflammatory hepcidin levels and the ensuing hypoferremic response. Dietary iron overload did not mitigate hepcidin induction in lipopolysaccharide (LPS)-treated wild type mice but prevented effective inflammatory hypoferremia. Likewise, LPS modestly decreased serum iron in hepcidin-deficient Hjv-/- mice, model of hemochromatosis. Synthetic hepcidin triggered hypoferremia in control but not iron-loaded wild type animals. Furthermore, it dramatically decreased hepatic and splenic ferroportin in Hjv-/- mice on standard or iron-deficient diet, but only triggered hypoferremia in the latter. Mechanistically, iron antagonized hepcidin responsiveness by inactivating IRPs in the liver and spleen to stimulate ferroportin mRNA translation. Prolonged LPS treatment eliminated ferroportin mRNA and permitted hepcidin-mediated hypoferremia in iron-loaded mice. Thus, de novo ferroportin synthesis is a critical determinant of serum iron and finetunes hepcidin-dependent functional outcomes. Our data uncover a crosstalk between hepcidin and IRE/IRP systems that controls tissue ferroportin expression and determines serum iron levels. Moreover, they suggest that hepcidin supplementation therapy is more efficient when combined with iron depletion.


Assuntos
Hepcidinas , Lipopolissacarídeos , Animais , Proteínas de Transporte de Cátions , Hepcidinas/genética , Hepcidinas/metabolismo , Hormônios , Lipopolissacarídeos/farmacologia , Camundongos , RNA Mensageiro/genética , Transdução de Sinais/fisiologia
9.
Commun Biol ; 5(1): 153, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194137

RESUMO

Hemojuvelin (HJV) enhances signaling to the iron hormone hepcidin and its deficiency causes iron overload, a risk factor for hepatocellular carcinoma (HCC). We utilized Hjv-/- mice to dissect mechanisms for hepatocarcinogenesis. We show that suboptimal treatment with diethylnitrosamine (DEN) triggers HCC only in Hjv-/- but not wt mice. Liver proteomics data were obtained by mass spectrometry. Hierarchical clustering analysis revealed that Hjv deficiency and DEN elicit similar liver proteomic responses, including induction of mitochondrial proteins. Dietary iron overload of wt mice does not recapitulate the liver proteomic phenotype of Hjv-/- animals, which is only partially corrected by iron depletion. Consistent with these data, primary Hjv-/- hepatocytes exhibit mitochondrial hyperactivity, while aged Hjv-/- mice develop spontaneous HCC. Moreover, low expression of HJV or hepcidin (HAMP) mRNAs predicts poor prognosis in HCC patients. We conclude that Hjv has a hepatoprotective function and its deficiency in mice promotes mitochondrial dysfunction and hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Idoso , Animais , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteômica
10.
PLoS One ; 16(6): e0253475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161397

RESUMO

Hepcidin is a peptide hormone that targets the iron exporter ferroportin, thereby limiting iron entry into the bloodstream. It is generated in hepatocytes mainly in response to increased body iron stores or inflammatory cues. Iron stimulates expression of bone morphogenetic protein 6 (BMP6) from liver sinusoidal endothelial cells, which in turn binds to BMP receptors on hepatocytes and induces the SMAD signaling cascade for transcriptional activation of the hepcidin-encoding HAMP mRNA. SMAD signaling is also essential for inflammatory HAMP mRNA induction by the IL-6/STAT3 pathway. Herein, we utilized human Huh7 hepatoma cells and primary murine hepatocytes to assess the effects of iron perturbations on signaling to hepcidin. Iron chelation appeared to slightly impair signaling to hepcidin. Subsequent iron supplementation not only failed to reverse these effects, but drastically reduced basal HAMP mRNA and inhibited HAMP mRNA induction by BMP6 and/or IL-6. Thus, treatment of cells with excess iron inhibited basal and BMP6-mediated SMAD5 phosphorylation and induction of HAMP, ID1 and SMAD7 mRNAs in a dose-dependent manner. Iron also inhibited IL-6-mediated STAT3 phosphorylation and induction of HAMP and SOCS3 mRNAs. These responses were accompanied by induction of GCLC and HMOX1 mRNAs, known markers of oxidative stress. We conclude that hepatocellular iron overload suppresses hepcidin by inhibiting the SMAD and STAT3 signaling pathways downstream of their respective ligands.


Assuntos
Desferroxamina/farmacologia , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Sobrecarga de Ferro/metabolismo , Sideróforos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 6/farmacologia , Linhagem Celular Tumoral , Hepatócitos/efeitos dos fármacos , Humanos , Interleucina-6/farmacologia , Camundongos , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteínas Smad/metabolismo
11.
PLoS One ; 14(7): e0219835, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31295319

RESUMO

Hepcidin is an iron regulatory peptide hormone that is secreted from hepatocytes and inhibits iron efflux from tissues to plasma. Under inflammatory conditions, hepcidin is transcriptionally induced by IL-6/STAT3 signaling and promotes hypoferremia, an innate immune response to infection. If this pathway remains unresolved, chronic overexpression of hepcidin contributes to the anemia of inflammation, a common medical condition. Previous work showed that carbon monoxide (CO) releasing drugs (CORMs) can attenuate inflammatory induction of hepcidin. Because CO is physiologically generated during heme degradation by heme oxygenase 1 (HO-1), an IL-6-inducible enzyme with anti-inflammatory properties, we hypothesized that hepatocellular HO-1 may operate as a physiological feedback regulator of hepcidin that resolves inflammatory signaling. To address this, we generated and analyzed hepatocyte-specific HO-1 knockout (Hmox1Alb-Cre) mice. We show that these animals mount appropriate hepcidin-mediated hypoferremic response to LPS-induced inflammation, with kinetics similar to those of control Hmox1fl/fl mice. Likewise, primary hepatocytes from Hmox1Alb-Cre and Hmox1fl/fl mice exhibit similar degree and kinetics of hepcidin induction following IL-6 treatment. We conclude that hepatocellular HO-1 has no physiological function on hepcidin regulation by the inflammatory pathway.


Assuntos
Heme Oxigenase-1/deficiência , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Mediadores da Inflamação/metabolismo , Animais , Biomarcadores , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout
12.
PLoS One ; 14(8): e0221455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31442254

RESUMO

Hepatic iron overload, a hallmark of hereditary hemochromatosis, triggers progressive liver disease. There is also increasing evidence for a pathogenic role of iron in non-alcoholic fatty liver disease (NAFLD), which may progress to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular cancer. Mouse models of hereditary hemochromatosis and NAFLD can be used to explore potential interactions between iron and lipid metabolic pathways. Hfe-/- mice, a model of moderate iron overload, were reported to develop early liver fibrosis in response to a high fat diet. However, this was not the case with Hjv-/- mice, a model of severe iron overload. These data raised the possibility that the Hfe gene may protect against liver injury independently of its iron regulatory function. Herein, we addressed this hypothesis in a comparative study utilizing wild type, Hfe-/-, Hjv-/- and double Hfe-/-Hjv-/- mice. The animals, all in C57BL/6J background, were fed with high fat diets for 14 weeks and developed hepatic steatosis, associated with iron overload. Hfe co-ablation did not sensitize steatotic Hjv-deficient mice to liver injury. Moreover, we did not observe any signs of liver inflammation or fibrosis even in single steatotic Hfe-/- mice. Ultrastructural studies revealed a reduced lipid and glycogen content in Hjv-/- hepatocytes, indicative of a metabolic defect. Interestingly, glycogen levels were restored in double Hfe-/-Hjv-/- mice, which is consistent with a metabolic function of Hfe. We conclude that hepatocellular iron excess does not aggravate diet-induced steatosis to steatohepatitis or early liver fibrosis in mouse models of hereditary hemochromatosis, irrespectively of the presence or lack of Hfe.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hemocromatose/complicações , Cirrose Hepática/complicações , Animais , Peso Corporal , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/complicações , Fígado Gorduroso/patologia , Hemocromatose/patologia , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Inflamação/patologia , Ferro/sangue , Fígado/metabolismo , Fígado/patologia , Fígado/ultraestrutura , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA