Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(5): 913-926, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626762

RESUMO

Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.


Assuntos
Mosaicismo , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Humanos , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Cerebelo/metabolismo , Cerebelo/patologia , Idoso , Encéfalo/metabolismo , Encéfalo/patologia , Ataxina-1/genética
2.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37301203

RESUMO

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genética
3.
J Med Genet ; 61(2): 103-108, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37879892

RESUMO

The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Masculino , Humanos , Feminino , Genes Homeobox , Proteínas de Homeodomínio/genética , Transtorno do Espectro Autista/genética , Mutação/genética , Fatores de Transcrição/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fenótipo , Agenesia do Corpo Caloso/genética
4.
Hum Genet ; 143(1): 71-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117302

RESUMO

Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.


Assuntos
Anormalidades Múltiplas , Face/anormalidades , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Adulto , Humanos , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Micrognatismo/genética , Micrognatismo/diagnóstico , Deformidades Congênitas da Mão/genética , Pescoço/anormalidades , Fenótipo , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética
5.
Am J Med Genet A ; 194(1): 9-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740550

RESUMO

DYRK1A Syndrome (OMIM #614104) is caused by pathogenic variations in the DYRK1A gene located on 21q22. Haploinsufficiency of DYRK1A causes a syndrome with global psychomotor delay and intellectual disability. Low birth weight, growth restriction with feeding difficulties, stature insufficiency, and microcephaly are frequently reported. This study aims to create specific growth charts for individuals with DYRK1A Syndrome and identify parameters for size prognosis. Growth parameters were obtained for 92 individuals with DYRK1A Syndrome (49 males vs. 43 females). The data were obtained from pediatric records, parent reporting, and scientific literature. Growth charts for height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were generated using generalized additive models through R package gamlss. The growth curves include height, weight, and OFC measurements for patients aged 0-5 years. In accordance with the literature, the charts show that individuals are more likely to present intrauterine growth restriction with low birth weight and microcephaly. The growth is then characterized by severe microcephaly, low weight, and short stature. This study proposes growth charts for widespread use in the management of patients with DYRK1A syndrome.


Assuntos
Deficiência Intelectual , Microcefalia , Masculino , Feminino , Criança , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Gráficos de Crescimento , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Síndrome , Índice de Massa Corporal , Estatura/genética
6.
J Med Genet ; 60(7): 717-721, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36599645

RESUMO

Usually, molecular diagnosis of spinocerebellar ataxia is based on a step-by-step approach with targeted sizing of four repeat expansions accounting for most dominant cases, then targeted sequencing of other genes. Nowadays, genome sequencing allows detection of most pathogenic variants in a single step. The ExpansionHunter tool can detect expansions in short-read genome sequencing data. Recent studies have shown that ExpansionHunter can also be used to identify repeat expansions in exome sequencing data. We tested ExpansionHunter on spinocerebellar ataxia exomes in a research context as a second-line analysis, after exclusion of main CAG repeat expansions in half of the probands. First, we confirmed the detection of expansions in seven known expansion carriers and then, after targeted analysis of ATXN1, 2, 3 and 7, CACNA1A, TBP, ATN1, NOP56, AR and HTT in 498 exomes, we found 22 additional pathogenic expansions. Comparison with capillary migration sizing in 247 individuals and confirmation of all expanded alleles detected by ExpansionHunter demonstrated that for these loci, sensitivity and specificity reached 100%. ExpansionHunter detected but underestimated the repeat size for larger expansions, and the normal alleles distribution at each locus should be taken into account to detect expansions. Exome combined with ExpansionHunter is reliable to detect repeat expansions in selected loci as first-line analysis in spinocerebellar ataxia.


Assuntos
Exoma , Ataxias Espinocerebelares , Humanos , Exoma/genética , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Alelos , Heterozigoto
7.
Genet Med ; 25(2): 100327, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36422518

RESUMO

PURPOSE: CAG/CAA repeat expansions in TBP>49 are responsible for spinocerebellar ataxia (SCA) type 17 (SCA17). We previously detected cosegregation of STUB1 variants causing SCA48 with intermediate alleles of TBP in 2 families. This cosegregation questions the existence of SCA48 as a monogenic disease. METHODS: We systematically sequenced TBP repeats in 34 probands of dominant ataxia families with STUB1 variants. In addition, we searched for pathogenic STUB1 variants in probands with expanded alleles of TBP>49 (n = 2) or intermediate alleles of TBP≥40 (n = 47). RESULTS: STUB1 variants were found in half of the TBP40-49 cohort. Mirroring this finding, TBP40-49 alleles were detected in 40% of STUB1 probands. The longer the TBP repeat length, the more likely the occurrence of cognitive impairment (P = .0129) and the faster the disease progression until death (P = .0003). Importantly, 13 STUB1 probands presenting with the full SCA48 clinical phenotype had normal TBP37-39 alleles, excluding digenic inheritance as the sole mode. CONCLUSION: We show that intermediate TBP40-49 alleles act as disease modifiers of SCA48 rather than a STUB1/TBP digenic model. This distinction from what has been proposed before has crucial consequences for genetic counseling in SCA48.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxia Cerebelar/genética , Fenótipo , Alelos , Expansão das Repetições de Trinucleotídeos/genética , Ubiquitina-Proteína Ligases/genética
8.
Mov Disord ; 38(7): 1294-1306, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37288993

RESUMO

BACKGROUND: Carriers of small cytosine-adenine-guanine (CAG) repeats below 39 in the HTT gene are traditionally associated with milder Huntington's disease, but their clinical profile has not been extensively studied. OBJECTIVE: To study the phenotype of CAG36-38 repeat carriers. METHODS: We included 35 patients and premanifest carriers of CAG36-38 repeats. We compared clinical and neuropsychological profiles of 11 CAG36-38 patients with 11 matched CAG40-42 patients. In addition, we analyzed 243 CAG36-38 individuals from the ENROLL study to complete the phenotype description. RESULTS: Global cognitive efficiency and performance in different cognitive subdomains were similar in small CAG36-38 and typically CAG40-42 expanded individuals. Chorea as the first symptom was significantly less frequent for CAG36-38 patients (P = 0.04) despite similar total motor scores at first visit. Total motor score at last visit was significantly lower in CAG36-38 carriers (P = 0.003). The similar cognitive and different motor profile of CAG36-38 (n = 243) and CAG40-42 (n = 4675) carriers was confirmed in the ENROLL database. Additionally, clinicians were significantly less confident in diagnosing Huntington's disease (P = 2.4e-8) and diagnosis happened significantly later in CAG36-38 (P = 2.2e-6) despite a similar age at symptom onset (P = 0.29). CONCLUSIONS: We showed that small CAG36-38 expansion carriers had a similar cognitive profile to those with the more common CAG40-42 expansions. These individuals may evade molecular diagnosis because of the absence of chorea rather than because of a low penetrance of symptoms. This finding should encourage neurologists to consider Huntington's disease in cognitively impaired elderly patients without typical chorea and anticipate consequences for genetic counseling in their offspring. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Coreia , Doença de Huntington , Humanos , Doença de Huntington/diagnóstico , Coreia/complicações , Fenótipo , Heterozigoto
9.
Brain ; 145(6): 2121-2132, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34927205

RESUMO

CANVAS caused by RFC1 biallelic expansions is a major cause of inherited sensory neuronopathy. Detection of RFC1 expansion is challenging and CANVAS can be associated with atypical features. We clinically and genetically characterized 50 patients, selected based on the presence of sensory neuronopathy confirmed by EMG. We screened RFC1 expansion by PCR, repeat-primed PCR, and Southern blotting of long-range PCR products, a newly developed method. Neuropathological characterization was performed on the brain and spinal cord of one patient. Most patients (88%) carried a biallelic (AAGGG)n expansion in RFC1. In addition to the core CANVAS phenotype (sensory neuronopathy, cerebellar syndrome and vestibular impairment), we observed chronic cough (97%), oculomotor signs (85%), motor neuron involvement (55%), dysautonomia (50%), and parkinsonism (10%). Motor neuron involvement was found for 24 of 38 patients (63.1%). First motor neuron signs, such as brisk reflexes, extensor plantar responses, and/or spasticity, were present in 29% of patients, second motor neuron signs, such as fasciculations, wasting, weakness, or a neurogenic pattern on EMG in 18%, and both in 16%. Mixed motor and sensory neuronopathy was observed in 19% of patients. Among six non-RFC1 patients, one carried a heterozygous AAGGG expansion and a pathogenic variant in GRM1. Neuropathological examination of one RFC1 patient with an enriched phenotype, including parkinsonism, dysautonomia, and cognitive decline, showed posterior column and lumbar posterior root atrophy. Degeneration of the vestibulospinal and spinocerebellar tracts was mild. We observed marked astrocytic gliosis and axonal swelling of the synapse between first and second motor neurons in the anterior horn at the lumbar level. The cerebellum showed mild depletion of Purkinje cells, with empty baskets, torpedoes, and astrogliosis characterized by a disorganization of the Bergmann's radial glia. We found neuronal loss in the vagal nucleus. The pars compacta of the substantia nigra was depleted, with widespread Lewy bodies in the locus coeruleus, substantia nigra, hippocampus, entorhinal cortex, and amygdala. We propose new guidelines for the screening of RFC1 expansion, considering different expansion motifs. Here, we developed a new method to more easily detect pathogenic RFC1 expansions. We report frequent motor neuron involvement and different neuronopathy subtypes. Parkinsonism was more prevalent in this cohort than in the general population, 10% versus the expected 1% (P < 0.001). We describe, for the first time, the spinal cord pathology in CANVAS, showing the alteration of posterior columns and roots, astrocytic gliosis and axonal swelling, suggesting motor neuron synaptic dysfunction.


Assuntos
Ataxia Cerebelar , Disautonomias Primárias , Ataxia Cerebelar/genética , Gliose , Humanos , Neurônios Motores/patologia , Reflexo Anormal/fisiologia
10.
Brain ; 145(4): 1519-1534, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34788392

RESUMO

With more than 40 causative genes identified so far, autosomal dominant cerebellar ataxias exhibit a remarkable genetic heterogeneity. Yet, half the patients are lacking a molecular diagnosis. In a large family with nine sampled affected members, we performed exome sequencing combined with whole-genome linkage analysis. We identified a missense variant in NPTX1, NM_002522.3:c.1165G>A: p.G389R, segregating with the phenotype. Further investigations with whole-exome sequencing and an amplicon-based panel identified four additional unrelated families segregating the same variant, for whom a common founder effect could be excluded. A second missense variant, NM_002522.3:c.980A>G: p.E327G, was identified in a fifth familial case. The NPTX1-associated phenotype consists of a late-onset, slowly progressive, cerebellar ataxia, with downbeat nystagmus, cognitive impairment reminiscent of cerebellar cognitive affective syndrome, myoclonic tremor and mild cerebellar vermian atrophy on brain imaging. NPTX1 encodes the neuronal pentraxin 1, a secreted protein with various cellular and synaptic functions. Both variants affect conserved amino acid residues and are extremely rare or absent from public databases. In COS7 cells, overexpression of both neuronal pentraxin 1 variants altered endoplasmic reticulum morphology and induced ATF6-mediated endoplasmic reticulum stress, associated with cytotoxicity. In addition, the p.E327G variant abolished neuronal pentraxin 1 secretion, as well as its capacity to form a high molecular weight complex with the wild-type protein. Co-immunoprecipitation experiments coupled with mass spectrometry analysis demonstrated abnormal interactions of this variant with the cytoskeleton. In agreement with these observations, in silico modelling of the neuronal pentraxin 1 complex evidenced a destabilizing effect for the p.E327G substitution, located at the interface between monomers. On the contrary, the p.G389 residue, located at the protein surface, had no predictable effect on the complex stability. Our results establish NPTX1 as a new causative gene in autosomal dominant cerebellar ataxias. We suggest that variants in NPTX1 can lead to cerebellar ataxia due to endoplasmic reticulum stress, mediated by ATF6, and associated to a destabilization of NP1 polymers in a dominant-negative manner for one of the variants.


Assuntos
Proteína C-Reativa , Ataxia Cerebelar , Estresse do Retículo Endoplasmático , Proteínas do Tecido Nervoso , Humanos , Proteína C-Reativa/genética , Ataxia Cerebelar/genética , Estresse do Retículo Endoplasmático/genética , Sequenciamento do Exoma , Mutação , Proteínas do Tecido Nervoso/genética , Linhagem
11.
Brain ; 145(9): 3095-3107, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35718349

RESUMO

The hereditary spastic paraplegias (HSP) are among the most genetically diverse of all Mendelian disorders. They comprise a large group of neurodegenerative diseases that may be divided into 'pure HSP' in forms of the disease primarily entailing progressive lower-limb weakness and spasticity, and 'complex HSP' when these features are accompanied by other neurological (or non-neurological) clinical signs. Here, we identified biallelic variants in the transmembrane protein 63C (TMEM63C) gene, encoding a predicted osmosensitive calcium-permeable cation channel, in individuals with hereditary spastic paraplegias associated with mild intellectual disability in some, but not all cases. Biochemical and microscopy analyses revealed that TMEM63C is an endoplasmic reticulum-localized protein, which is particularly enriched at mitochondria-endoplasmic reticulum contact sites. Functional in cellula studies indicate a role for TMEM63C in regulating both endoplasmic reticulum and mitochondrial morphologies. Together, these findings identify autosomal recessive TMEM63C variants as a cause of pure and complex HSP and add to the growing evidence of a fundamental pathomolecular role of perturbed mitochondrial-endoplasmic reticulum dynamics in motor neurone degenerative diseases.


Assuntos
Canais de Cálcio , Mitocôndrias , Paraplegia Espástica Hereditária , Canais de Cálcio/genética , Retículo Endoplasmático/genética , Humanos , Mitocôndrias/patologia , Mutação , Paraplegia Espástica Hereditária/genética
12.
Am J Hum Genet ; 105(3): 631-639, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31353024

RESUMO

Notch signaling is an established developmental pathway for brain morphogenesis. Given that Delta-like 1 (DLL1) is a ligand for the Notch receptor and that a few individuals with developmental delay, intellectual disability, and brain malformations have microdeletions encompassing DLL1, we hypothesized that insufficiency of DLL1 causes a human neurodevelopmental disorder. We performed exome sequencing in individuals with neurodevelopmental disorders. The cohort was identified using known Matchmaker Exchange nodes such as GeneMatcher. This method identified 15 individuals from 12 unrelated families with heterozygous pathogenic DLL1 variants (nonsense, missense, splice site, and one whole gene deletion). The most common features in our cohort were intellectual disability, autism spectrum disorder, seizures, variable brain malformations, muscular hypotonia, and scoliosis. We did not identify an obvious genotype-phenotype correlation. Analysis of one splice site variant showed an in-frame insertion of 12 bp. In conclusion, heterozygous DLL1 pathogenic variants cause a variable neurodevelopmental phenotype and multi-systemic features. The clinical and molecular data support haploinsufficiency as a mechanism for the pathogenesis of this DLL1-related disorder and affirm the importance of DLL1 in human brain development.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Haploinsuficiência , Proteínas de Membrana/genética , Transtornos do Neurodesenvolvimento/genética , Estudos de Coortes , Feminino , Humanos , Ligantes , Masculino , Linhagem , Sequenciamento do Exoma
13.
Am J Hum Genet ; 104(6): 1210-1222, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079897

RESUMO

We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.


Assuntos
Proteínas de Ligação a DNA/genética , Epilepsia/etiologia , Variação Genética , Heterozigoto , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/patologia , Feminino , Haploinsuficiência , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo , Adulto Jovem
14.
Genet Med ; 24(9): 1941-1951, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678782

RESUMO

PURPOSE: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. METHOD: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). RESULTS: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. CONCLUSION: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Proteínas Serina-Treonina Quinases , Simportadores , Encéfalo/anormalidades , Domínio Catalítico/genética , Hemizigoto , Humanos , Mutação com Perda de Função , Masculino , Herança Materna/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação de Sentido Incorreto , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Simportadores/metabolismo
15.
Genet Med ; 24(12): 2464-2474, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214804

RESUMO

PURPOSE: KLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20. METHODS: Patients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed. RESULTS: We studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type ß-propeller domain of the KLHL20 protein, which shapes the substrate binding surface. CONCLUSION: Our findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Convulsões Febris , Criança , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento , Epilepsia/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Ubiquitina-Proteína Ligases/genética
16.
Clin Genet ; 102(2): 117-122, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470444

RESUMO

BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.


Assuntos
Síndrome de Cornélia de Lange , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Criança , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/patologia , Feminino , Genômica , Humanos , Mutação , Proteínas Nucleares/genética , Fenótipo , Gravidez , Fatores de Transcrição/genética
17.
Clin Genet ; 102(2): 98-109, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616059

RESUMO

Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders.


Assuntos
Deficiência Intelectual , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Fatores de Transcrição , Humanos , Deficiência Intelectual/diagnóstico , Transtornos dos Movimentos/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/complicações , Convulsões/genética , Fatores de Transcrição/genética
18.
Genet Med ; 23(11): 2150-2159, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34345024

RESUMO

PURPOSE: DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics. METHODS: We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature. RESULTS: This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice. CONCLUSION: Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene.


Assuntos
Deficiência Intelectual , Microcefalia , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Animais , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Camundongos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Quinases Dyrk
19.
Genet Med ; 23(11): 2160-2170, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34234304

RESUMO

PURPOSE: Diagnosis of inherited ataxia and related diseases represents a real challenge given the tremendous heterogeneity and clinical overlap of the various causes. We evaluated the efficacy of molecular diagnosis of these diseases by sequencing a large cohort of undiagnosed families. METHODS: We analyzed 366 unrelated consecutive patients with undiagnosed ataxia or related disorders by clinical exome-capture sequencing. In silico analysis was performed with an in-house pipeline that combines variant ranking and copy-number variant (CNV) searches. Variants were interpreted according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. RESULTS: We established the molecular diagnosis in 46% of the cases. We identified 35 mildly affected patients with causative variants in genes that are classically associated with severe presentations. These cases were explained by the occurrence of hypomorphic variants, but also rarely suspected mechanisms such as C-terminal truncations and translation reinitiation. CONCLUSION: A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.


Assuntos
Ataxia Cerebelar , Genômica , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Humanos , Peroxinas , Receptores Citoplasmáticos e Nucleares , Estados Unidos , Sequenciamento do Exoma
20.
Genet Med ; 23(9): 1715-1725, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34054129

RESUMO

PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.


Assuntos
Anormalidades do Olho , Transtornos do Neurodesenvolvimento , Animais , Anormalidades do Olho/genética , Estudos de Associação Genética , Humanos , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Receptores de Superfície Celular , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA