Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 12(2): 167-77, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21217759

RESUMO

Mouse CCL8 is a CC chemokine of the monocyte chemoattractant protein (MCP) family whose biological activity and receptor usage have remained elusive. Here we show that CCL8 is highly expressed in the skin, where it serves as an agonist for the chemokine receptor CCR8 but not for CCR2. This distinguishes CCL8 from all other MCP chemokines. CCL8 responsiveness defined a population of highly differentiated, CCR8-expressing inflammatory T helper type 2 (T(H)2) cells enriched for interleukin (IL)-5. Ccr8- and Ccl8-deficient mice had markedly less eosinophilic inflammation than wild-type or Ccr4-deficient mice in a model of chronic atopic dermatitis. Adoptive transfer studies established CCR8 as a key regulator of T(H)2 cell recruitment into allergen-inflamed skin. In humans, CCR8 expression also defined an IL-5-enriched T(H)2 cell subset. The CCL8-CCR8 chemokine axis is therefore a crucial regulator of T(H)2 cell homing that drives IL-5-mediated chronic allergic inflammation.


Assuntos
Quimiocina CCL1/metabolismo , Quimiocina CCL8/metabolismo , Dermatite Atópica/imunologia , Pele/patologia , Células Th2/metabolismo , Transferência Adotiva , Animais , Sinalização do Cálcio/imunologia , Células Cultivadas , Quimiocina CCL1/genética , Quimiocina CCL1/imunologia , Quimiocina CCL8/genética , Quimiocina CCL8/imunologia , Quimiotaxia/genética , Quimiotaxia/imunologia , Clonagem Molecular , Modelos Animais de Doenças , Humanos , Interleucina-5/imunologia , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Retorno de Linfócitos/imunologia , Células Th2/imunologia , Células Th2/patologia
2.
Proc Natl Acad Sci U S A ; 117(2): 1129-1138, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879345

RESUMO

Immunotherapy directed at the PD-L1/PD-1 axis has produced treatment advances in various human cancers. Unfortunately, progress has not extended to glioblastoma (GBM), with phase III clinical trials assessing anti-PD-1 monotherapy failing to show efficacy in newly diagnosed and recurrent tumors. Myeloid-derived suppressor cells (MDSCs), a subset of immunosuppressive myeloid derived cells, are known to infiltrate the tumor microenvironment of GBM. Growing evidence suggests the CCL2-CCR2 axis is important for this process. This study evaluated the combination of PD-1 blockade and CCR2 inhibition in anti-PD-1-resistant gliomas. CCR2 deficiency unmasked an anti-PD-1 survival benefit in KR158 glioma-bearing mice. CD11b+/Ly6Chi/PD-L1+ MDSCs within established gliomas decreased with a concomitant increase in overall CCR2+ cells and MDSCs within bone marrow of CCR2-deficient mice. The CCR2 antagonist CCX872 increased median survival as a monotherapy in KR158 glioma-bearing animals and further increased median and overall survival when combined with anti-PD-1. Additionally, combination of CCX872 and anti-PD-1 prolonged median survival time in 005 GSC GBM-bearing mice. In both models, CCX872 decreased tumor associated MDSCs and increased these cells within the bone marrow. Examination of tumor-infiltrating lymphocytes revealed an elevated population, increased IFNγ expression, indicating enhanced cytolytic activity, as well as decreased expression of exhaustion markers in CD4+ and CD8+ T cells following combination treatment. These data establish that combining CCR2 and PD-1 blockade extends survival in clinically relevant murine glioma models and provides the basis on which to advance this combinatorial treatment toward early-phase human trials.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Glioma/tratamento farmacológico , Células Mieloides/metabolismo , Receptores CCR2/efeitos dos fármacos , Receptores CCR2/metabolismo , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CCL2 , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioma/patologia , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/metabolismo , Receptor de Morte Celular Programada 1 , Receptores CCR2/genética , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos
3.
J Immunol ; 203(12): 3157-3165, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31676674

RESUMO

C-C chemokine receptor 2 (CCR2) is a key driver of monocyte/macrophage trafficking to sites of inflammation and has long been considered a target for intervention in autoimmune disease. However, systemic administration of CCR2 antagonists is associated with marked increases in CCL2, a CCR2 ligand, in the blood. This heretofore unexplained phenomenon complicates interpretation of in vivo responses to CCR2 antagonism. We report that CCL2 elevation after pharmacological CCR2 blockade is due to interruption in a balance between CCL2 secretion by a variety of cells and its uptake by constitutive internalization and recycling of CCR2. We observed this phenomenon in response to structurally diverse CCR2 antagonists in wild-type mice, and also found substantially higher CCL2 plasma levels in mice lacking the CCR2 gene. Our findings suggest that CCL2 is cleared from blood in a CCR2-dependent but G protein (Gαi, Gαs or Gαq/11)-independent manner. This constitutive internalization is rapid: on a given monocyte, the entire cell surface CCR2 population is turned over in <30 minutes. We also found that constitutive receptor internalization/recycling and ligand uptake are not universal across monocyte-expressed chemokine receptors. For example, CXCR4 does not internalize constitutively. In summary, we describe a mechanism that explains the numerous preclinical and clinical reports of increased CCL2 plasma levels following in vivo administration of CCR2 antagonists. These findings suggest that constitutive CCL2 secretion by monocytes and other cell types is counteracted by constant uptake and internalization by CCR2-expressing cells. The effectiveness of CCR2 antagonists in disease settings may be dependent upon this critical equilibrium.


Assuntos
Quimiocina CCL2/biossíntese , Receptores CCR2/metabolismo , Animais , Biomarcadores , Linhagem Celular , Quimiocina CCL2/sangue , Quimiocina CCL2/genética , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Humanos , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Receptores CCR2/antagonistas & inibidores
4.
J Immunol ; 202(6): 1687-1692, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30718298

RESUMO

Several types of psoriasiform dermatitis are associated with increased IL-36 cytokine activity in the skin. A rare, but severe, psoriasis-like disorder, generalized pustular psoriasis (GPP), is linked to loss-of-function mutations in the gene encoding IL-36RA, an important negative regulator of IL-36 signaling. To understand the effects of IL-36 dysregulation in a mouse model, we studied skin inflammation induced by intradermal injections of preactivated IL-36α. We found the immune cells infiltrating IL-36α-injected mouse skin to be of dramatically different composition than those infiltrating imiquimod-treated skin. The IL-36α-induced leukocyte population comprised nearly equal numbers of CD4+ αß T cells, neutrophils, and inflammatory dendritic cells, whereas the imiquimod-induced population comprised γδ T cells and neutrophils. Ligands for chemokine receptors CCR6 and CXCR2 are increased in both GPP and IL-36α-treated skin, which led us to test an optimized small-molecule antagonist (CCX624) targeting CCR6 and CXCR2 in the IL-36α model. CCX624 significantly reduced the T cell, neutrophil, and inflammatory dendritic cell infiltrates and was more effective than saturating levels of an anti-IL-17RA mAb at reducing inflammatory symptoms. These findings put CCR6 and CXCR2 forward as novel targets for a mechanistically distinct therapeutic approach for inflammatory skin diseases involving dysregulated IL-36 signaling, such as GPP.


Assuntos
Anti-Inflamatórios/farmacologia , Interleucina-1/toxicidade , Psoríase/imunologia , Receptores CCR6/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Interleucina-1/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Pele/efeitos dos fármacos , Pele/imunologia
5.
Immunity ; 35(5): 780-91, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22018469

RESUMO

Dendritic cells (DCs) in tissues and lymphoid organs comprise distinct functional subsets that differentiate in situ from circulating progenitors. Tissue-specific signals that regulate DC subset differentiation are poorly understood. We report that DC-specific deletion of the Notch2 receptor caused a reduction of DC populations in the spleen. Within the splenic CD11b(+) DC subset, Notch signaling blockade ablated a distinct population marked by high expression of the adhesion molecule Esam. The Notch-dependent Esam(hi) DC subset required lymphotoxin beta receptor signaling, proliferated in situ, and facilitated CD4(+) T cell priming. The Notch-independent Esam(lo) DCs expressed monocyte-related genes and showed superior cytokine responses. In addition, Notch2 deletion led to the loss of CD11b(+)CD103(+) DCs in the intestinal lamina propria and to a corresponding decrease of IL-17-producing CD4(+) T cells in the intestine. Thus, Notch2 is a common differentiation signal for T cell-priming CD11b(+) DC subsets in the spleen and intestine.


Assuntos
Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Intestinos/imunologia , Receptor Notch2/metabolismo , Transdução de Sinais , Baço/imunologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Baço/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
6.
J Immunol ; 199(9): 3129-3136, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972090

RESUMO

mAbs that neutralize IL-17 or its receptor have proven efficacious in treating moderate-to-severe psoriasis, confirming IL-17 as an important driver of this disease. In mice, a rare population of T cells, γδT17 cells, appears to be a dominant source of IL-17 in experimental psoriasis. These cells traffic between lymph nodes and the skin, and are identified by their coexpression of the TCR variable regions γ4 and δ4. These cells are homologous to the Vγ9Vδ2 T cell population identified in human psoriatic plaques. In this study we report that a potent and specific small molecule antagonist of the CCR6 chemokine receptor, CCX2553, was efficacious in reducing multiple aspects of psoriasis in two different murine models of the disease. Administration of CCX2553 ameliorated skin inflammation in both the IL-23-induced ear swelling model and the topical imiquimod model, and significantly reduced the number of γδT17 cells in inflamed skin. γδT17 cells were greatly reduced in imiquimod-treated skin of CCR6-/- mice, but adoptively transferred wild-type (CCR6+/+) γδT17 cells homed normally to the skin of imiquimod-treated CCR6-/- mice. Our data suggest that γδT17 cells are completely dependent on CCR6 for homing to psoriasiform skin. Thus, CCR6 may constitute a novel target for a mechanistically distinct therapeutic approach to treating psoriasis.


Assuntos
Movimento Celular/imunologia , Interleucina-17/imunologia , Psoríase/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores CCR6/imunologia , Pele/imunologia , Linfócitos T/imunologia , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Interleucina-17/genética , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Psoríase/genética , Psoríase/patologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores CCR6/genética , Pele/patologia , Linfócitos T/patologia
7.
Am J Physiol Gastrointest Liver Physiol ; 314(4): G483-G493, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420066

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a common disease, closely associated with obesity and insulin resistance. We investigated the presence of a subset of myeloid cells associated with metabolic disturbance in the liver of patients with NAFLD and a murine model of obesity-induced liver disease. Gene and protein expression in liver and serum was investigated with RT-PCR or ELISA and correlated to clinical disease. Liver-infiltrating immune cells were isolated from normal or diseased human liver for flow cytometric analysis. In animal experiments, mice were fed a high-fat diet (60% of calories from fat) for 16 wk, or high-fat diet with 30% fructose for 32 wk to induce steatohepatitis and fibrosis. A small molecule inhibitor of CC chemokine receptor 2 (CCR2), CCX872, was administered to some mice. A subset of CD11c+CD206+ immune cells was enriched in human liver tissue, and greater infiltration was observed in NAFLD. The presence of CD11c+CD206+ myeloid cells correlated with systemic insulin resistance. CD11c+CD206+ cells expressed high levels of CCR2, and liver CC chemokine ligand 2 (CCL2) expression was increased in nonalcoholic steatohepatitis and correlated with disease activity. In mice, CCR2 inhibition reduced infiltration of liver CD11b+CD11c+F4/80+ monocytes, which are functional homologs of human CD11c+CD206+ cells, and improved liver injury and glycemic control. A role for CCR2/CCL2 in human NAFLD has long been postulated. These data confirm a role for this chemokine/receptor axis, through mediating adipose and hepatic infiltration of myeloid cells. Inhibition of CCR2 improved hepatic inflammation and fibrosis in murine models of NAFLD. These data confirm the rationale for targeting CCR2 to treat NAFLD. NEW & NOTEWORTHY These data show for the first time that CD11c+CD206+ myeloid cells, previously associated with human adipose tissue inflammation, infiltrate into liver tissue in nonalcoholic fatty liver disease. These cells express CCR2. Inhibition of CCR2 in mice inhibits hepatic inflammation caused by a murine homolog of these myeloid cells and improves experimental liver disease.


Assuntos
Quimiotaxia , Resistência à Insulina , Fígado/metabolismo , Monócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores CCR2/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Glicemia/metabolismo , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Quimiocina CCL2/metabolismo , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
8.
J Immunol ; 195(9): 4306-18, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26401006

RESUMO

West Nile virus (WNV) is a re-emerging pathogen and the leading cause of epidemic encephalitis in the United States. Inflammatory monocytes are a critical component of the cellular infiltrate found in the CNS during WNV encephalitis, although the molecular cues involved in their migration are not fully understood. In mice, we previously showed that WNV infection induces a CCR2-dependent monocytosis that precedes monocyte migration into the CNS. Currently, the relative contribution of the CCR2 ligands, chemokines CCL2 and CCL7, in directing monocyte mobilization and leukocyte migration into the CNS is unclear. In this study, we demonstrate that, although both CCL2 and CCL7 are required for efficient monocytosis and monocyte accumulation in the CNS, only CCL7 deficiency resulted in increased viral burden in the brain and enhanced mortality. The enhanced susceptibility in the absence of CCL7 was associated with the delayed migration of neutrophils and CD8(+) T cells into the CNS compared with WT or Ccl2(-/-) mice. To determine whether CCL7 reconstitution could therapeutically alter the survival outcome of WNV infection, we administered exogenous CCL7 i.v. to WNV-infected Ccl7(-/-) mice and observed a significant increase in monocytes and neutrophils, but not CD8(+) T cells, within the CNS, as well as an enhancement in survival compared with Ccl7(-/-) mice treated with a linear CCL7 control peptide. Our experiments suggest that CCL7 is an important protective signal involved in leukocyte trafficking during WNV infection, and it may have therapeutic potential for the treatment of acute viral infections of the CNS.


Assuntos
Movimento Celular , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Leucocitose/metabolismo , Monócitos/metabolismo , Febre do Nilo Ocidental/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL7/genética , Quimiocina CCL7/farmacologia , Chlorocebus aethiops , Encefalite Viral/genética , Encefalite Viral/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica , Interações Hospedeiro-Patógeno , Leucocitose/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia
9.
J Immunol ; 192(5): 2291-304, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24477914

RESUMO

The transcriptional repressor B lymphocyte-induced maturation protein 1 (BLIMP1) is a master regulator of B and T cell differentiation. To examine the role of BLIMP1 in innate immunity, we used a conditional knockout (CKO) of Blimp1 in myeloid cells and found that Blimp1 CKO mice were protected from lethal infection induced by Listeria monocytogenes. Transcriptome analysis of Blimp1 CKO macrophages identified the murine chemokine (C-C motif) ligand 8, CCL8, as a direct target of Blimp1-mediated transcriptional repression in these cells. BLIMP1-deficient macrophages expressed elevated levels of Ccl8, and consequently Blimp1 CKO mice had higher levels of circulating CCL8, resulting in increased neutrophils in the peripheral blood, promoting a more aggressive antibacterial response. Mice lacking the Ccl8 gene were more susceptible to L. monocytogenes infection than were wild-type mice. Although CCL8 failed to recruit neutrophils directly, it was chemotactic for γ/δ T cells, and CCL8-responsive γ/δ T cells were enriched for IL-17F. Finally, CCL8-mediated enhanced clearance of L. monocytogenes was dependent on γ/δ T cells. Collectively, these data reveal an important role for BLIMP1 in modulating host defenses by suppressing expression of the chemokine CCL8.


Assuntos
Quimiocina CCL8/imunologia , Regulação da Expressão Gênica/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Macrófagos/imunologia , Fatores de Transcrição/imunologia , Animais , Quimiocina CCL8/genética , Regulação da Expressão Gênica/genética , Listeriose/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Fatores de Transcrição/genética , Transcrição Gênica/genética , Transcrição Gênica/imunologia
10.
J Immunol ; 191(3): 1063-72, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23817416

RESUMO

Fractalkine, a chemokine anchored to neurons or peripheral endothelial cells, serves as an adhesion molecule or as a soluble chemoattractant. Fractalkine binds CX3CR1 on microglia and circulating monocytes, dendritic cells, and NK cells. The aim of this study is to determine the role of CX3CR1 in the trafficking and function of myeloid cells to the CNS during experimental autoimmune encephalomyelitis (EAE). Our results show that, in models of active EAE, Cx3cr1(-/-) mice exhibited more severe neurologic deficiencies. Bone marrow chimeric mice confirmed that CX3CR1 deficiency in bone marrow enhanced EAE severity. Notably, CX3CR1 deficiency was associated with an increased accumulation of CD115(+)Ly6C(-)CD11c(+) dendritic cells into EAE-affected brains that correlated with enhanced demyelination and neuronal damage. Furthermore, higher IFN-γ and IL-17 levels were detected in cerebellar and spinal cord tissues of CX3CR1-deficient mice. Analyses of peripheral responses during disease initiation revealed a higher frequency of IFN-γ- and IL-17-producing T cells in lymphoid tissues of CX3CR1-deficient as well as enhanced T cell proliferation induced by CX3CR1-deficient dendritic cells. In addition, adoptive transfer of myelin oligodendrocyte glycoprotein35-55-reactive wild-type T cells induced substantially more severe EAE in CX3CR1-deficient recipients when compared with wild-type recipients. Collectively, the data demonstrate that besides its role in chemoattraction, CX3CR1 is a key regulator of myeloid cell activation contributing to the establishment of adaptive immune responses.


Assuntos
Autoimunidade , Encefalomielite Autoimune Experimental/imunologia , Inflamação/imunologia , Células Mieloides/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores de Citocinas/metabolismo , Receptores de HIV/metabolismo , Imunidade Adaptativa , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Células da Medula Óssea , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Receptor 1 de Quimiocina CX3C , Proliferação de Células , Sistema Nervoso Central/citologia , Quimera , Doenças Desmielinizantes/genética , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Interferon gama/metabolismo , Interleucina-1/metabolismo , Interleucina-17/metabolismo , Ativação Linfocitária/imunologia , Tecido Linfoide/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/genética , Receptores de Citocinas/imunologia , Receptores de HIV/imunologia , Linfócitos T/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(44): 18150-5, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23071306

RESUMO

Under most physiological circumstances, monocytes are excluded from parenchymal CNS tissues. When widespread monocyte entry occurs, their numbers decrease shortly after engraftment in the presence of microglia. However, some disease processes lead to focal and selective loss, or dysfunction, of microglia, and microglial senescence typifies the aged brain. In this regard, the long-term engraftment of monocytes in the microglia-depleted brain remains unknown. Here, we report a model in which a niche for myeloid cells was created through microglia depletion. We show that microglia-depleted brain regions of CD11b-HSVTK transgenic mice are repopulated with new Iba-1-positive cells within 2 wk. The engrafted cells expressed high levels of CD45 and CCR2 and appeared in a wave-like pattern frequently associated with blood vessels, suggesting the engrafted cells were peripheral monocytes. Although two times more numerous and morphologically distinct from resident microglia up to 27 wk after initial engraftment, the overall distribution of the engrafted cells was remarkably similar to that of microglia. Two-photon in vivo imaging revealed that the engrafted myeloid cells extended their processes toward an ATP source and displayed intracellular calcium transients. Moreover, the engrafted cells migrated toward areas of kainic acid-induced neuronal death. These data provide evidence that circulating monocytes have the potential to occupy the adult CNS myeloid niche normally inhabited by microglia and identify a strong homeostatic drive to maintain the myeloid component in the mature brain.


Assuntos
Sistema Nervoso Central/citologia , Homeostase , Microglia/citologia , Trifosfato de Adenosina/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Camundongos , Microglia/metabolismo , Timidina Quinase/genética
12.
Bioorg Med Chem Lett ; 24(7): 1843-5, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24613378

RESUMO

We describe novel alkylsulfones as potent CCR2 antagonists with reduced hERG channel activity and improved pharmacokinetics over our previously described antagonists. Several of these new alkylsulfones have a profile that includes functional antagonism of CCR2, in vitro microsomal stability, and oral bioavailability. With this improved profile, we demonstrate that two of these antagonists, 2 and 12, are orally efficacious in an animal model of inflammatory recruitment.


Assuntos
Receptores CCR2/antagonistas & inibidores , Sulfonas/química , Animais , Cicloexanos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Conformação Molecular , Relação Estrutura-Atividade
13.
J Immunol ; 188(1): 29-36, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22079990

RESUMO

Microglial cells are difficult to track during development because of the lack of specific reagents for myeloid subpopulations. To further understand how myeloid lineages differentiate during development to create microglial cells, we investigated CX3CR1 and CCR2 transcription unit activation in Cx3cr1(+/GFP)CCR2(+/RFP) knockin fluorescent protein reporter mice. The principal findings include: 1) CX3CR1(+) cells localized to the aorta-gonad-mesonephros region, and visualized at embryonic day (E)9.0 in the yolk sac and neuroectoderm; 2) at E10.5, CX3CR1 single-positive microglial cells were visualized penetrating the neuroepithelium; and 3) CX3CR1 and CCR2 distinguished infiltrating macrophages from resident surveillant or activated microglia within tissue sections and by flow cytometric analyses. Our results support the contribution of the yolk sac as a source of microglial precursors. We provide a novel model to monitor chemokine receptor expression changes in microglia and myeloid cells early (E8.0-E10.5) in development and during inflammatory conditions, which have been challenging to visualize in mammalian tissues.


Assuntos
Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Microglia/metabolismo , Receptores CCR2/biossíntese , Receptores de Quimiocinas/biossíntese , Animais , Receptor 1 de Quimiocina CX3C , Embrião de Mamíferos/imunologia , Feminino , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microglia/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Especificidade de Órgãos/fisiologia , Receptores CCR2/genética , Receptores CCR2/imunologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia
14.
Am J Physiol Renal Physiol ; 305(9): F1288-97, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23986513

RESUMO

Chemokine (C-C motif) receptor 2 (CCR2) is central for the migration of monocytes into inflamed tissues. The novel CCR2 antagonist CCX140-B, which is currently in two separate phase 2 clinical trials in diabetic nephropathy, has recently been shown to reduce hemoglobin A1c and fasting blood glucose levels in type 2 diabetics. In this report, we describe the effects of this compound on glycemic and renal function parameters in diabetic mice. Since CCX140-B has a low affinity for mouse CCR2, transgenic human CCR2 knockin mice were generated and rendered diabetic with either a high-fat diet (diet-induced obesity) or by deletion of the leptin receptor gene (db/db). CCX140-B treatment in both models resulted in decreased albuminuria, which was associated with decreased glomerular hypertrophy and increased podocyte density. Moreover, treatment of diet-induced obese mice with CCX140-B resulted in decreased levels of fasting blood glucose and insulin, normalization of homeostatic model assessment of insulin resistance values, and decreased numbers of adipose tissue inflammatory macrophages. Unlike other CCR2 antagonists, CCX140-B had no effect on plasma levels of the CCR2 ligand CCL2 or on the numbers of blood monocytes. These results support the ongoing evaluation of this molecule in diabetic subjects with impaired renal function.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Rim/efeitos dos fármacos , Receptores CCR2/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Nefropatias Diabéticas/genética , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Resistência à Insulina , Testes de Função Renal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores CCR2/genética
15.
Biochem Biophys Res Commun ; 438(2): 257-63, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23872063

RESUMO

Most end-stage renal disease kidneys display accumulation of extracellular matrix (ECM) in the renal tubular compartment (tubular interstitial fibrosis - TIF) which is strongly correlated with the future loss of renal function. Although inflammation is a key event in the development of TIF, it can also have a beneficial anti-fibrotic role depending in particular on the stage of the pathology. Chemokines play an important role in monocyte extravasation in the inflammatory process. CCL2 has already been shown to be involved in the development of TIF but CCL7, a close relative of CCL2 and able to bind to similar receptors, has not been studied in renal disease. We therefore studied chemokine CCL7 in a model of unilateral ureteral obstruction (UUO)-induced TIF. We observed that the role of CCL7 differs depending on the stage of the pathology. In early stages (0-8 days), CCL7 deficient (CCL7-KO) mice displayed attenuated TIF potentially involving two mechanisms: an early (0-3 days) decrease of inflammatory cell infiltration followed (3-8 days) by a decrease in tubular ECM production independent of inflammation. In contrast, during later stages of obstruction (10-14 days), CCL7-KO mice displayed increased TIF which was again associated with reduced inflammation. Interestingly, the switch between this anti- to profibrotic effect was accompanied by an increased influx of immunosuppressive regulatory T cells. In conclusion, these results highlight for the first time a dual role for CCL7 in the development of renal TIF, deleterious in early stages but beneficial during later stages.


Assuntos
Quimiocina CCL7/fisiologia , Túbulos Renais/metabolismo , Animais , Linhagem Celular , Quimiocina CCL7/genética , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Inflamação/patologia , Rim/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/metabolismo , Fatores de Tempo
16.
bioRxiv ; 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36711864

RESUMO

Chronic inflammation and tissue fibrosis are common stress responses that worsen organ function, yet the molecular mechanisms governing their crosstalk are poorly understood. In diseased organs, stress-induced changes in gene expression fuel maladaptive cell state transitions and pathological interaction between diverse cellular compartments. Although chronic fibroblast activation worsens dysfunction of lung, liver, kidney, and heart, and exacerbates many cancers, the stress-sensing mechanisms initiating the transcriptional activation of fibroblasts are not well understood. Here, we show that conditional deletion of the transcription co-activator Brd4 in Cx3cr1-positive myeloid cells ameliorates heart failure and is associated with a dramatic reduction in fibroblast activation. Analysis of single-cell chromatin accessibility and BRD4 occupancy in vivo in Cx3cr1-positive cells identified a large enhancer proximal to Interleukin-1 beta (Il1b), and a series of CRISPR deletions revealed the precise stress-dependent regulatory element that controlled expression of Il1b in disease. Secreted IL1B functioned non-cell autonomously to activate a p65/RELA-dependent enhancer near the transcription factor MEOX1, resulting in a profibrotic response in human cardiac fibroblasts. In vivo, antibody-mediated IL1B neutralization prevented stress-induced expression of MEOX1, inhibited fibroblast activation, and improved cardiac function in heart failure. The elucidation of BRD4-dependent crosstalk between a specific immune cell subset and fibroblasts through IL1B provides new therapeutic strategies for heart disease and other disorders of chronic inflammation and maladaptive tissue remodeling.

17.
PLoS One ; 18(6): e0286724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37285333

RESUMO

The interaction of PD-L1 with PD-1 is a major immune checkpoint that limits effector T cell function against cancer cells; monoclonal antibodies that block this pathway have been approved in multiple tumor indications. As a next generation therapy, small molecule inhibitors of PD-L1 have inherent drug properties that may be advantageous for certain patient populations compared to antibody therapies. In this report we present the pharmacology of the orally-available, small molecule PD-L1 inhibitor CCX559 for cancer immunotherapy. CCX559 potently and selectively inhibited PD-L1 binding to PD-1 and CD80 in vitro, and increased activation of primary human T cells in a T cell receptor-dependent fashion. Oral administration of CCX559 demonstrated anti-tumor activity similar to an anti-human PD-L1 antibody in two murine tumor models. Treatment of cells with CCX559 induced PD-L1 dimer formation and internalization, which prevented interaction with PD-1. Cell surface PD-L1 expression recovered in MC38 tumors upon CCX559 clearance post dosing. In a cynomolgus monkey pharmacodynamic study, CCX559 increased plasma levels of soluble PD-L1. These results support the clinical development of CCX559 for solid tumors; CCX559 is currently in a Phase 1, first in patient, multicenter, open-label, dose-escalation study (ACTRN12621001342808).


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Camundongos , Animais , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Macaca fascicularis , Anticorpos Monoclonais , Neoplasias/tratamento farmacológico , Imunoterapia/métodos
18.
Cell Metab ; 6(2): 96-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17681144

RESUMO

Macrophages orchestrate an inflammatory response that contributes to glucose intolerance in diet-induced obesity and plaque instability in atherosclerosis. Within this heterogeneous group of cells are proinflammatory (M1) and anti-inflammatory (M2) macrophages. Recent work has identified the nuclear hormone receptor PPARgamma as a critical signaling molecule in determining macrophage phenotype in vitro and in adipose tissue. In the current issue of Cell Metabolism, Bouhlel et al. (2007) extend this paradigm to the vessel wall by showing that both M1 and M2 macrophages are present in atherosclerotic lesions and that activation of PPARgamma polarizes circulating blood monocytes to become M2 macrophages.


Assuntos
Polaridade Celular , Resistência à Insulina , Macrófagos/citologia , PPAR gama/metabolismo , Animais , Biomarcadores/metabolismo , Doenças das Artérias Carótidas/patologia , Humanos , Camundongos , Monócitos/citologia , Monócitos/efeitos dos fármacos , PPAR gama/agonistas , Tiazolidinedionas/farmacologia
19.
J Pharmacol Exp Ther ; 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22378937

RESUMO

The following manuscript was published as a Fast Forward article on February 29, 2012: Sullivan TJ, Dairaghi DJ, Krasinski A, Miao Z, Wang Y, Zhao BN, Baumgart T, Berahovich R, Ertl LS, Pennell A, Seitz L, Miao S, Ungashe S, Wei Z, Johnson D, Boring L, Tsou C-L, Charo IF, Bekker P, Schall TJ, and Jaen JC, Characterization of CCX140-B, an orally bioavailable antagonist of the CCR2 chemokine receptor, for the treatment of type 2 diabetes and associated complications. J Pharmacol Exp Ther jpet.111.190918; doi:10.1124/jpet.111.190918 It was later found that the chemical identity of a compound cited in the article, CCX140-B, was not sufficiently disclosed. The authors are unable, at this time, to provide the chemical identity of CCX140-B in accordance with the editorial policies of The Journal of Pharmacology and Experimental Therapeutics. As a result, the authors have voluntarily withdrawn this manuscript from publication. We apologize for any inconvenience this may cause JPET's readers.

20.
Ann Neurol ; 70(6): 986-995, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22190370

RESUMO

OBJECTIVE: Cognitive decline accompanies acute illness and surgery, especially in the elderly. Surgery engages the innate immune system that launches a systemic inflammatory response that, if unchecked, can cause multiple organ dysfunction. We sought to understand the mechanisms whereby the brain is targeted by the inflammatory response and how this can be resolved. METHODS: C57BL/6J, Ccr2(RFP/+)Cx3cr1(GFP/+), Ikk(F/F) mice and LysM-Cre/Ikk(F/F) mice underwent stabilized tibial fracture operation under analgesia and general anesthesia. Separate cohorts of mice were tested for systemic and hippocampal inflammation, integrity of the blood-brain barrier (BBB), and cognition. The putative resolving effects of the cholinergic pathway on these postoperative responses were also studied. RESULTS: Peripheral surgery disrupts the BBB via release of tumor necrosis factor-alpha (TNFα), which facilitates the migration of macrophages into the hippocampus. Macrophage-specific deletion of Ikappa B kinase (IKK)ß, a central coordinator of TNFα signaling through activation of nuclear factor (NF) κB, prevents BBB disruption and macrophage infiltration in the hippocampus following surgery. Activation of the α7 subtype of nicotinic acetylcholine receptors, an endogenous inflammation-resolving pathway, prevents TNFα-induced NF-κB activation, macrophage migration into the hippocampus, and cognitive decline following surgery. INTERPRETATION: These data reveal the mechanisms for bidirectional communication between the brain and immune system following aseptic trauma. Pivotal molecular mechanisms can be targeted to prevent and/or resolve postoperative neuroinflammation and cognitive decline.


Assuntos
Transtornos Cognitivos/etiologia , Encefalite/etiologia , Encefalite/metabolismo , Complicações Pós-Operatórias/fisiopatologia , Animais , Compostos Aza/administração & dosagem , Comportamento Animal , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C , Movimento Celular , Células Cultivadas , Transtornos Cognitivos/prevenção & controle , Condicionamento Psicológico/fisiologia , Citocinas/metabolismo , Dioxinas/administração & dosagem , Modelos Animais de Doenças , Esquema de Medicação , Encefalite/patologia , Encefalite/prevenção & controle , Medo/fisiologia , Proteína HMGB1/metabolismo , Hipocampo/patologia , Quinase I-kappa B/genética , Proteínas Luminescentes/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora , NF-kappa B/metabolismo , Agonistas Nicotínicos/administração & dosagem , Receptores CCR2/genética , Receptores de Quimiocinas/genética , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA