Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(45): E4822-31, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25352667

RESUMO

Torsins are membrane-associated ATPases whose activity is dependent on two activating cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain-like LAP1 (LULL1). The mechanism by which these cofactors regulate Torsin activity has so far remained elusive. In this study, we identify a conserved domain in these activators that is predicted to adopt a fold resembling an AAA+ (ATPase associated with a variety of cellular activities) domain. Within these domains, a strictly conserved Arg residue present in both activating cofactors, but notably missing in Torsins, aligns with a key catalytic Arg found in AAA+ proteins. We demonstrate that cofactors and Torsins associate to form heterooligomeric assemblies with a defined Torsin-activator interface. In this arrangement, the highly conserved Arg residue present in either cofactor comes into close proximity with the nucleotide bound in the neighboring Torsin subunit. Because this invariant Arg is strictly required to stimulate Torsin ATPase activity but is dispensable for Torsin binding, we propose that LAP1 and LULL1 regulate Torsin ATPase activity through an active site complementation mechanism.


Assuntos
Adenosina Trifosfatases , Proteínas de Transporte , Proteínas de Choque Térmico HSC70 , Proteínas de Membrana , Chaperonas Moleculares , Complexos Multiproteicos , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arginina/química , Arginina/genética , Arginina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Domínio Catalítico , Coenzimas/química , Coenzimas/genética , Coenzimas/metabolismo , Ativação Enzimática/fisiologia , Células HEK293 , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(17): E1545-54, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569223

RESUMO

TorsinA is a membrane-associated AAA+ (ATPases associated with a variety of cellular activities) ATPase implicated in primary dystonia, an autosomal-dominant movement disorder. We reconstituted TorsinA and its cofactors in vitro and show that TorsinA does not display ATPase activity in isolation; ATP hydrolysis is induced upon association with LAP1 and LULL1, type II transmembrane proteins residing in the nuclear envelope and endoplasmic reticulum. This interaction requires TorsinA to be in the ATP-bound state, and can be attributed to the luminal domains of LAP1 and LULL1. This ATPase activator function controls the activities of other members of the Torsin family in distinct fashion, leading to an acceleration of the hydrolysis step by up to two orders of magnitude. The dystonia-causing mutant of TorsinA is defective in this activation mechanism, suggesting a loss-of-function mechanism for this congenital disorder.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Distonia Muscular Deformante/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Cromatografia em Gel , Clonagem Molecular , Distonia Muscular Deformante/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrólise , Immunoblotting , Imunoprecipitação , Chaperonas Moleculares/genética
3.
Bioconjug Chem ; 19(12): 2585-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19090701

RESUMO

A generally applicable strategy of chemically labeling (-)-morphine (1) is described. The synthesis starts from commercially available starting materials and can be completed in two steps with an overall yield of 23%. In silico simulation and NMR results show that the binding of (-)-morphine to one of its molecular targets, toll-like receptor 4 (TLR4), was not affected by the modification. Secreted embryonic alkaline phosphatase (SEAP) reporter assay results demonstrate that C(3) biotinylated and unmodified (-)-morphine show similar biological activities in live cells. To our knowledge, these studies provide the first practical and concise method to label various opioid derivatives, a group of important therapeutics in pain management, for biochemical/pharmacological studies.


Assuntos
Analgésicos Opioides/síntese química , Analgésicos Opioides/farmacologia , Biotinilação , Desenho de Fármacos , Morfina/síntese química , Morfina/farmacologia , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Animais , Bovinos , Linhagem Celular , Biologia Computacional , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Morfina/química , Morfina/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Front Mol Biosci ; 4: 29, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553638

RESUMO

Torsins are essential, disease-relevant AAA+ (ATPases associated with various cellular activities) proteins residing in the endoplasmic reticulum and perinuclear space, where they are implicated in a variety of cellular functions. Recently, new structural and functional details about Torsins have emerged that will have a profound influence on unraveling the precise mechanistic details of their yet-unknown mode of action in the cell. While Torsins are phylogenetically related to Clp/HSP100 proteins, they exhibit comparatively weak ATPase activities, which are tightly controlled by virtue of an active site complementation through accessory cofactors. This control mechanism is offset by a TorsinA mutation implicated in the severe movement disorder DYT1 dystonia, suggesting a critical role for the functional Torsin-cofactor interplay in vivo. Notably, TorsinA lacks aromatic pore loops that are both conserved and critical for the processive unfolding activity of Clp/HSP100 proteins. Based on these distinctive yet defining features, we discuss how the apparent dynamic nature of the Torsin-cofactor system can inform emerging models and hypotheses for Torsin complex formation and function. Specifically, we propose that the dynamic assembly and disassembly of the Torsin/cofactor system is a critical property that is required for Torsins' functional roles in nuclear trafficking and nuclear pore complex assembly or homeostasis that merit further exploration. Insights obtained from these future studies will be a valuable addition to our understanding of disease etiology of DYT1 dystonia.

5.
Mol Biol Cell ; 28(21): 2765-2772, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28814508

RESUMO

TorsinA is an essential AAA+ ATPase requiring LAP1 or LULL1 as cofactors. The dynamics of the Torsin/cofactor system remain poorly understood, with previous models invoking Torsin/cofactor assemblies with fixed stoichiometries. Here we demonstrate that TorsinA assembles into homotypic oligomers in the presence of ATP. Torsin variants mutated at the "back" interface disrupt homo-oligomerization but still show robust ATPase activity in the presence of its cofactors. These Torsin mutants are severely compromised in their ability to rescue nuclear envelope defects in Torsin-deficient cells, suggesting that TorsinA homo-oligomers play a key role in vivo. Engagement of the oligomer by LAP1 triggers ATP hydrolysis and rapid complex disassembly. Thus the Torsin complex is a highly dynamic assembly whose oligomeric state is tightly controlled by distinctively localized cellular cofactors. Our discovery that LAP1 serves as a modulator of the oligomeric state of an AAA+ protein establishes a novel means of regulating this important class of oligomeric ATPases.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrólise , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Membrana Nuclear/metabolismo
6.
J Mol Biol ; 425(17): 3073-90, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23747485

RESUMO

The pleckstrin homology (PH) domain of the general receptor of phosphoinositides 1 (GRP1) protein selectively binds to a rare signaling phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), in the membrane. The specific PIP3 lipid docking of GRP1 PH domain is essential to protein cellular function and is believed to occur in a stepwise process, electrostatic-driven membrane association followed by the specific PIP3 binding. By a combination of all-atom molecular dynamics (MD) simulations, coarse-grained analysis, electron paramagnetic resonance (EPR) membrane docking geometry, and fluorescence resonance energy transfer (FRET) kinetic studies, we have investigated the search and bind process in the GRP1 PH domain at the molecular scale. We simulated the two membrane binding states of the GRP1 PH domain in the PIP3 search process, before and after the GRP1 PH domain docks with the PIP3 lipid. Our results suggest that the background anionic phosphatidylserine lipids, which constitute around one-fifth of the membrane by composition, play a critical role in the initial stages of recruiting protein to the membrane surface through non-specific electrostatic interactions. Our data also reveal a previously unseen transient membrane association mechanism that is proposed to enable a two-dimensional "hopping" search of the membrane surface for the rare PIP3 target lipid. We further modeled the PIP3-bound membrane-protein system using the EPR membrane docking structure for the MD simulations, quantitatively validating the EPR membrane docking structure and augmenting our understanding of the binding interface with atomic-level detail. Several observations and hypotheses reached from our MD simulations are also supported by experimental kinetic studies.


Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Membrana Celular/metabolismo , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA