Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(28): 19236-19246, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957915

RESUMO

An oxybenzone molecule in the gas phase was characterized by mass spectrometry and angle-resolved photoelectron spectroscopy, using both single and multiphoton ionization schemes. A tabletop high harmonic generation source with a monochromator was used for single-photon ionization of oxybenzone with photon energies of up to 35.7 eV. From this, vertical ionization and appearance energies, as well as energy-dependent anisotropy parameters were retrieved and compared with the results from DFT calculations. For two-photon ionization using 4.7 eV light, we found a higher appearance energy than in the extreme ultraviolet (EUV) case, highlighting the possible influence of an intermediate state on the photoionization process. We found no differences in the mass spectra when ionizing oxybenzone by single-photons between 17.2 and 35.7 eV. However, for the multiphoton ionization, the fragmentation process was found to be sensitive to the photoionization order and laser intensity. The "softest" method was found to be two-photon ionization using 4.7 eV light, which led to no measurable fragmentation up to an intensity of 5 × 1012 W cm-2.

2.
J Phys Chem A ; 124(39): 7959-7965, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878434

RESUMO

Below band gap formation of solvated electrons in neutral water clusters using pump-probe photoelectron imaging is compared with recent data for liquid water and with above band gap excitation studies in liquid and clusters. Similar relaxation times on the order of 200 fs and 1-2 ps are retrieved for below and above band gap excitation, in both clusters and liquid. The independence of the relaxation times from the generation process indicates that these times are dominated by the solvent response, which is significantly slower than the various solvated electron formation processes. The analysis of the temporal evolution of the vertical electron binding energy and the electron binding energy at half-maximum suggests a dependence of the solvation time on the binding energy.

3.
J Phys Chem A ; 123(12): 2426-2437, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30835464

RESUMO

CO2 clusters with 2 to 4300 molecules are characterized with mass spectrometry and infrared spectroscopy in the uniform postnozzle flow of Laval expansions at constant temperatures of ∼29 and ∼43 K. The mass spectra provide independent, accurate information on the cluster size distributions and through magic numbers also on cluster structures. The experimental results are complemented with force field, quantum chemical, and vibrational exciton calculations. We find our data to be consistent with predominantly fcc cuboctahedral structures for clusters with more than about 50 molecules. Infrared spectra of cluster size distributions with average sizes above 140-220 molecules are completely dominated by the features from the larger cuboctahedral clusters in the distribution. For very small clusters, exciton simulations predict a pronounced broadening of the infrared band as soon as the average cluster size exceeds about five molecules. The nucleation behavior of CO2 under the present conditions is found to be barrierless in agreement with similar trends previously observed for other compounds at very high supersaturation.

4.
Phys Chem Chem Phys ; 20(24): 16364-16371, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29872831

RESUMO

Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter ß as a function of cluster size. A remarkably steep decrease of ß with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

5.
J Chem Phys ; 142(15): 154506, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25903896

RESUMO

We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

6.
J Chem Phys ; 138(4): 044202, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23387577

RESUMO

We present a new experimental configuration for the study of size-dependent, angle-resolved photoelectron and photoion spectra of weakly bound ultrafine aerosol particles targeted at particle sizes below ~20 nm. It combines single photon ionization by a tunable, table-top vacuum ultraviolet laser at energies up to 18 eV with velocity map imaging detection and independent size determination of the aerosol particles using the Na-doping method. As an example, the size-dependence of the valence photoelectron spectrum of dimethyl ether clusters and ultrafine aerosols is investigated. Up to a mean particle diameter of ~3-4 nm, the first ionization energy (value at band maximum) decreases systematically (up to ~1 eV) and the corresponding band broadens systematically (up to a factor of ~3) with increasing aggregate size. Plateau values for band positions and bandwidths are reached beyond a diameter of ~3-4 nm. Experimental evidence for the dominance of the fast intermolecular proton transfer over monomer fragmentation reactions upon ionization is presented via photoion imaging.


Assuntos
Aerossóis/química , Lasers , Éteres Metílicos/química , Sódio/química , Raios Ultravioleta , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Propriedades de Superfície
7.
Langmuir ; 26(18): 14951-7, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20795658

RESUMO

The present contribution investigates whether it is possible to form stable amorphous particles of ketoprofen-poly(lactic acid), naproxen-poly(lactic acid), and indomethacin-poly(lactic acid). Amorphization and micronization of these poorly water-soluble drugs offer a combined way to improve the solubility and enhance the dissolution rate. The particles were formed by pulsed rapid expansion of supercritical CO(2) solutions and characterized in the aerosol phase with rapid-scan infrared spectroscopy and after collection with scanning electron microscopy and X-ray diffraction. None of the three drug-poly(lactic acid) mixtures showed long-term stability on the order of weeks against the reversion from the amorphous to the crystalline state. Ketoprofen was the only drug that formed mixed amorphous particles with at least short-term stability. The long-term products turned out to be submicrometer- to micrometer-sized particles with a crystalline drug core and an amorphous poly(lactic acid) shell. Moreover, we found that the poly(lactic acid) coating stabilizes the particles against agglomeration.


Assuntos
Cetoprofeno/química , Ácido Láctico/química , Polímeros/química , Indometacina/química , Cinética , Microscopia Eletrônica de Varredura , Naproxeno/química , Poliésteres , Soluções , Espectrofotometria Infravermelho
8.
J Phys Chem Lett ; 10(17): 4777-4782, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382737

RESUMO

We have investigated the solvation dynamics and the genuine binding energy and photoemission anisotropy of the solvated electron in neutral water clusters with a combination of time-resolved photoelectron velocity map imaging and electron scattering simulations. The dynamics was probed with a UV probe pulse following above-band-gap excitation by an EUV pump pulse. The solvation dynamics is completed within about 2 ps. Only a single band is observed in the spectra, with no indication for isomers with distinct binding energies. Data analysis with an electron scattering model reveals a genuine binding energy in the range of 3.55-3.85 eV and a genuine anisotropy parameter in the range of 0.51-0.66 for the ground-state hydrated electron. All of these observations coincide with those for liquid bulk, which is rather unexpected for an average cluster size of 300 molecules.

9.
J Phys Chem A ; 112(37): 8686-9, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18729429

RESUMO

Electronic transitions of the linear MgC 4H and MgC 6H radicals have been observed in the gas phase using laser-induced fluorescence spectroscopy. The species were prepared in a supersonic expansion by ablation of a magnesium rod in the presence of acetylene, diacetylene, or methane gas. The transitions were recorded in the 445-446 nm region and assigned to the A (2)Pi- X (2)Sigma (+) systems ( T 0 = 22 431.978(7) and 22 090.08(7) cm (-1)) based on previously reported mass-selective resonance-enhanced ionization spectra and the rotational structure. A spectral fit in MgC 4H yields the rotational constants B'' = 0.04619(19) cm (-1) for the X (2)Sigma (+) state and B' = 0.04748(20) cm (-1) for A (2)Pi. Astrophysical implications are briefly addressed.

10.
Rev Sci Instrum ; 85(9): 095107, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273772

RESUMO

We report on a new instrument for single aerosol particle studies at low temperatures that combines an optical trap consisting of two counter-propagating Bessel beams (CPBBs) and temperature control down to 223 K (-50 °C). The apparatus is capable of capturing and stably trapping individual submicrometer- to micrometer-sized aerosol particles for up to several hours. First results from studies of hexadecane, dodecane, and water aerosols reveal that we can trap and freeze supercooled droplets ranging in size from ~450 nm to 5500 nm (radius). We have conducted homogeneous and heterogeneous freezing experiments, freezing-melting cycles, and evaporation studies. To our knowledge, this is the first reported observation of the freezing process for levitated single submicrometer-sized droplets in air using optical trapping techniques. These results show that a temperature-controlled CPBB trap is an attractive new method for studying phase transitions of individual submicrometer aerosol particles.

11.
J Phys Chem A ; 111(47): 11986-9, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-17966995

RESUMO

An electronic transition of the AlC2 radical (C2v structure) has been observed using laser-induced fluorescence spectroscopy. The molecule was prepared in a supersonic expansion by ablation of an aluminum rod in the presence of acetylene gas. A spectrum was recorded in the 451-453 nm region and assigned to the C 2B2-X 2A1 system (T0 = 22,102.7 cm(-1)) based on a rotational analysis and agreement with calculated molecular parameters and excitation energies. Ab initio results obtained using couple cluster methods are in accord with previous theoretical work which concludes that ground-state AlC2 possesses a T-shaped C2v 2A1 geometry, with the linear 2Sigma+ AlCC isomer 0.70 eV higher in energy. A fit of the experimental spectrum yields rotational constants in the ground and electronically excited states that are in reasonable agreement with the calculated values: A'' = 1.7093(107), B'' = 0.4052(50), C'' = 0.3228(49) cm(-1) for the X 2A1 state, and A' = 1.5621(137), B' = 0.4028(46), C' = 0.3201(54) cm(-1) for C 2B2. Variation in individual fluorescence lifetimes suggests that the emitting C 2B2 state undergoes rovibronic mixing with lower lying electronic states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA