Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 286(30): 26396-405, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21652718

RESUMO

Invasion of hepatocytes by Plasmodium sporozoites deposited by Anopheles mosquitoes, and their subsequent transformation into infective merozoites is an obligatory step in the initiation of malaria. Interactions between the sporozoites and hepatocytes lead to a distinct, complex and coordinated cellular and systemic host response. Little is known about host liver cell response to sporozoite invasion, or whether it is primarily adaptive for the parasite, for the host, or for both. Our present study used gene expression profiling of human HepG2-A16 liver cells infected with Plasmodium falciparum sporozoites to understand the host early cellular events and factors influencing parasite infectivity and sporozoite development. Our results show that as early as 30 min following wild-type, non-irradiated sporozoite exposure, the expressions of at least 742 genes was selectively altered. These genes regulate diverse biological functions, such as immune processes, cell adhesion and communications, metabolism pathways, cell cycle regulation, and signal transduction. These functions reflect cellular events consistent with initial host cell defense responses, as well as alterations in host cells to sustain sporozoites growth and survival. Irradiated sporozoites gave very similar gene expression pattern changes, but direct comparative analysis between liver gene expression profiles caused by irradiated and non-irradiated sporozoites identified 29 genes, including glypican-3, that were specifically up-regulated only in irradiated sporozoites. Elucidating the role of this subset of genes may help identify the molecular basis for the irradiated sporozoites inability to develop intrahepatically, and their usefulness as an immunogen for developing protective immunity against pre-erythrocytic stage malaria.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum , Esporozoítos , Transcrição Gênica , Perfilação da Expressão Gênica , Células Hep G2 , Hepatócitos/parasitologia , Humanos
2.
Transfusion ; 51(3): 630-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20849405

RESUMO

BACKGROUND: Transfusion-transmitted malaria remains a serious concern for blood safety. Viable Plasmodium parasites must be present in human blood to transmit malaria, but their survival in blood over time stored under refrigeration has never been carefully investigated. STUDY DESIGN AND METHODS: We spiked leukoreduced normal human blood with Plasmodium falciparum (3D7 strain) asexual ring-stage parasites and stored it at 4 °C for 28 days, taking samples at different days intervals. We evaluated the samples for parasitemia by blood film microscopy and by culturing red blood cells (RBCs) to allow further development of parasites. RESULTS: We observed a significant reduction in parasitemia (0.5% vs. 0.12%) after only 1 day in storage at 4 °C. Thereafter, reduction in parasitemia was relatively gradual. Microscopically detectable parasites were present even after 28 days of storage. However, after storing for more than 14 days at 4 °C, parasites no longer replicated when cultured in vitro. CONCLUSION: Although the storage of asexual blood-stage P. falciparum parasites at 4 °C is detrimental to their survival (a 7.1-fold reduction in parasitemia after 14 days in storage), parasites remained microscopically detectable for 28 days, the end time point of our study. Further in vitro and in vivo studies will be needed to confirm loss of viability of P. falciparum after 14 days in storage, but our initial efforts repeatedly failed to show maturation and development of the parasites in cultured RBCs after that time.


Assuntos
Parasitemia/parasitologia , Plasmodium falciparum/fisiologia , Preservação de Sangue , Humanos , Refrigeração
3.
Infect Immun ; 78(11): 4613-24, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20823210

RESUMO

The multiple antigen peptide (MAP) approach is an effective method to chemically synthesize and deliver multiple T-cell and B-cell epitopes as the constituents of a single immunogen. Here we report on the design, chemical synthesis, and immunogenicity of three Plasmodium falciparum MAP vaccines that incorporated antigenic epitopes from the sporozoite, liver, and blood stages of the life cycle. Antibody and cellular responses were determined in three inbred (C57BL/6, BALB/c, and A/J) strains, one congenic (HLA-A2 on the C57BL/6 background) strain, and one outbred strain (CD1) of mice. All three MAPs were immunogenic and induced both antibody and cellular responses, albeit in a somewhat genetically restricted manner. Antibodies against MAP-1, MAP-2, and MAP-3 had an antiparasite effect that was also dependent on the mouse major histocompatibility complex background. Anti-MAP-1 (CSP-based) antibodies blocked the invasion of HepG2 liver cells by P. falciparum sporozoites (highest, 95.16% in HLA-A2 C57BL/6; lowest, 11.21% in BALB/c). Furthermore, antibodies generated following immunizations with the MAP-2 (PfCSP, PfLSA-1, PfMSP-1(42), and PfMSP-3b) and MAP-3 (PfRAP-1, PfRAP-2, PfSERA, and PfMSP-1(42)) vaccines were able to reduce the growth of blood stage parasites in erythrocyte cultures to various degrees. Thus, MAP-based vaccines remain a viable option to induce effective antibody and cellular responses. These results warrant further development and preclinical and clinical testing of the next generation of candidate MAP vaccines that are based on the conserved protective epitopes from Plasmodium antigens that are widely recognized by populations of divergent HLA types from around the world.


Assuntos
Antígenos de Protozoários , Vacinas Antimaláricas , Malária Falciparum/prevenção & controle , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas , Sequência de Aminoácidos , Animais , Animais não Endogâmicos , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Desenho de Fármacos , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Eritrócitos/parasitologia , Feminino , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Hepatócitos/parasitologia , Humanos , Imunização , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/síntese química , Vacinas Antimaláricas/química , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos , Dados de Sequência Molecular , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/síntese química , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia
4.
Hum Vaccin ; 6(1): 97-106, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19946222

RESUMO

Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Ensaios Clínicos como Assunto , Aprovação de Drogas , Humanos , Estados Unidos , Vacinas Atenuadas/imunologia
5.
Indian J Exp Biol ; 47(7): 527-36, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19761036

RESUMO

Development of an effective malaria vaccine remains one of the biggest challenges faced by modern science. Although in the last decade tremendous advances have taken place in the design, construction and testing of malaria vaccines, many questions still remained unanswered. This review highlights exclusively some of the exciting and most recent progress in the development and clinical testing of candidate malaria vaccines and points out some of the outstanding scientific issues and technological challenges that must be met to develop a successful vaccine.


Assuntos
Vacinas Antimaláricas/isolamento & purificação , Vacinas Antimaláricas/farmacologia , Animais , Humanos , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/economia , Plasmodium/crescimento & desenvolvimento , Plasmodium/imunologia , Pesquisa/economia , Pesquisa/tendências
6.
Mol Biochem Parasitol ; 133(2): 255-65, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14698437

RESUMO

The ability of Plasmodium falciparum-infected erythrocytes to adhere to endothelial receptors and sequester in diverse host organs is an important pathogenic mechanism. Cytoadherence is mediated by variant surface antigens, which are referred to as PfEMP-1 and are encoded by var genes. The extracellular regions of PfEMP-1 contain multiple conserved cysteine-rich domains that are referred to as Duffy-binding-like (DBL) domains. Here, we analyze the adhesive phenotype of an Indian P. falciparum field isolate, JDP8, which binds ICAM-1 but does not bind CD36. This is a unique cytoadherence phenotype because P. falciparum strains that bind ICAM-1 described thus far usually also bind CD36. Moreover, binding to both receptors is thought to be important for static adhesion under flow. The ICAM-1 binding population of P. falciparum JDP8 adheres to endothelial cells under flow despite poor binding to CD36. We have also identified an expressed var gene, JDP8Icvar, which mediates the ICAM-1 binding phenotype of JDP8. Expression of different regions of JDP8Icvar on the surface of COS-7 cells followed by binding assays demonstrates that the ICAM-1 binding domain maps to the DBL2betaC2 domain of JDP8Icvar. Sequence comparison with two previously identified ICAM-1 binding domains of PfEMP-1, which also map to DBLbetaC2 domains, suggests that diverse P. falciparum isolates use a structurally conserved domain to bind ICAM-1. It thus appears that functional constraints may place limits on the extent of sequence diversity in receptor-binding domains of PfEMP-1.


Assuntos
Adesão Celular , Molécula 1 de Adesão Intercelular/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD36/metabolismo , Células CHO , Células COS , Linhagem Celular , Chlorocebus aethiops , Cricetinae , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Células Endoteliais/parasitologia , Expressão Gênica , Genes de Protozoários , Humanos , Dados de Sequência Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Ligação Proteica , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Am J Trop Med Hyg ; 71(4): 457-65, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15516643

RESUMO

We describe the epidemiology of malaria in San Dulakudar, a village in Sundargarh District in the state of Orissa in eastern India. Malaria transmission is perennial with Plasmodium falciparum, accounting for greater than 80% of malaria cases. Transmission intensity varies with season with high transmission after the monsoon rains in autumn and winter, low transmission in summer, and intermediate transmission in spring. The anthropophagic mosquito Anopheles fluviatilis was identified as the main vector for malaria transmission. Based on observations of spleen rates and supported by data on malaria parasite prevalence and malaria incidence, San Dulakudar can be classified as a hyperendemic area for P. falciparum malaria. Parasite prevalence and malaria incidence rates decrease with age, suggesting that residents of San Dulakudar develop immunity to malaria. The study demonstrates the presence of regions in the Indian subcontinent such as Sundargarh District where P. falciparum is the primary cause of malaria and where malaria transmission rates are comparable to those found in many parts of Africa.


Assuntos
Doenças Endêmicas , Imunidade Inata , Malária Falciparum , Plasmodium falciparum/classificação , Plasmodium falciparum/isolamento & purificação , Adolescente , Adulto , Animais , Anopheles/parasitologia , Criança , Pré-Escolar , Humanos , Incidência , Índia/epidemiologia , Lactente , Insetos Vetores/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Prevalência , População Rural
9.
PLoS One ; 6(4): e18393, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21533224

RESUMO

BACKGROUND: The malaria parasite Plasmodium falciparum EBA-175 binds its receptor sialic acids on glycophorin A when invading erythrocytes. The receptor-binding region (RII) contains two cysteine-rich domains with similar cysteine motifs (F1 and F2). Functional relationships between F1 and F2 domains and characterization of EBA-175 were studied using specific monoclonal antibodies (mAbs) against these domains. METHODS AND FINDINGS: Five mAbs specific for F1 or F2 were generated. Three mAbs specific for F2 potently blocked binding of EBA-175 to erythrocytes, and merozoite invasion of erythrocytes (IC(50) 10 to 100 µg/ml IgG in growth inhibition assays). A mAb specific for F1 blocked EBA-175 binding and merozoite invasion less effectively. The difference observed between the IC(50) of F1 and F2 mAbs was not due to differing association and disassociation rates as determined by surface plasmon resonance. Four of the mAbs recognized conformation-dependent epitopes within F1 or F2. Used in combination, F1 and F2 mAbs blocked the binding of native EBA-175 to erythrocytes and inhibited parasite invasion synergistically in vitro. MAb R217, the most potent, did not recognize sporozoites, 3-day hepatocyte stage parasites, nor rings, trophozoites, gametocytes, retorts, ookinetes, and oocysts but recognized 6-day hepatocyte stage parasites, and schizonts. Even though efficient at blocking binding to erythrocytes and inhibiting invasion into erythrocytes, MAb R217 did not inhibit sporozoite invasion and development in hepatocytes in vitro. CONCLUSIONS: The role of the F1 and F2 domains in erythrocyte invasion and binding was elucidated with mAbs. These mAbs interfere with native EBA-175 binding to erythrocyte in a synergistic fashion. The stage specific expression of EBA-175 showed that the primary focus of activity was the merozoite stage. A recombinant RII protein vaccine consisting of both F1 and F2 domains that could induce synergistic activity should be optimal for induction of antibody responses that interfere with merozoite invasion of erythrocytes.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antígenos de Protozoários/imunologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/imunologia
10.
PLoS One ; 5(1): e8947, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20126610

RESUMO

It was recently reported that when mosquitoes infected with P. berghei sporozoites feed on mice, they deposit approximately 100-300 sporozoites in the dermis. When we inoculate P. yoelii (Py) sporozoites intravenously (IV) into BALB/c mice, the 50% infectious dose (ID(50)) is often less than 3 sporozoites, indicating that essentially all Py sporozoites in salivary glands are infectious. Thus, it should only take the bite of one infected mosquito to infect 100% of mice. In human subjects, it takes the bite of at least 5 P. falciparum-infected mosquitoes to achieve 100% blood stage infection. Exposure to 1-2 infected mosquitoes only leads to blood stage infection in approximately 50% of subjects. If mosquitoes carrying Py sporozoites inoculate 100-300 sporozoites per bite, and 1 to 2 mosquito bites achieve 50% blood stage infection rates, then this would suggest that the majority of sporozoites inoculated by mosquitoes into the dermis are not responsible for a productive infection, or that a significant number of sporozoite-infected mosquitoes do not inoculate any sporozoites. The objective of this study was to determine if this is the case. We therefore studied the infectivity to mice of the bites of 1, 2, 4, or 5-8 Py-infected mosquitoes. The bite of one Py sporozoite-infected mosquito caused blood stage infection in 41.4% (12/29) of mice, two bites infected 66.7% (22/33), four bites infected 75% (18/24), and five to eight bites infected 100% (21/21). These findings demonstrate that inoculation of sporozoites by mosquito bite is much less efficient than IV inoculation of Py sporozoites by needle and syringe. Such data may have implications for determining the best route and dose of administration to humans of our attenuated P. falciparum sporozoite vaccine, the scientific basis of which is immunity by bites from irradiated infected mosquitoes, and suggest that the challenge is to develop a method of administration that approximates IV inoculation, not one that mimics mosquito bite.


Assuntos
Anopheles/parasitologia , Malária/transmissão , Plasmodium yoelii/fisiologia , Animais , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C
11.
PLoS One ; 5(12): e14275, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21151554

RESUMO

Plasmodium vivax (Pv) is the second most important human malaria parasite. Recent data indicate that the impact of Pv malaria on the health and economies of the developing world has been dramatically underestimated. Pv has a unique feature in its life cycle. Uninucleate sporozoites (spz), after invasion of human hepatocytes, either proceed to develop into tens of thousands of merozoites within the infected hepatocytes or remain as dormant forms called hypnozoites, which cause relapses of malaria months to several years after the primary infection. Elimination of malaria caused by Pv will be facilitated by developing a safe, highly effective drug that eliminates Pv liver stages, including hypnozoites. Identification and development of such a drug would be facilitated by the development of a medium to high throughput assay for screening drugs against Pv liver stages. We undertook the present pilot study to (1) assess the feasibility of producing large quantities of purified, vialed, cryopreserved Pv sporozoites and (2) establish a system for culturing the liver stages of Pv in order to assess the effects of drugs on the liver stages of Pv. We used primaquine (PQ) to establish this assay model, because PQ is the only licensed drug known to clear all Pv hepatocyte stages, including hypnozoites, and the effect of PQ on Pv hepatocyte stage development in vitro has not previously been reported. We report that we have established the capacity to reproducibly infect hepatoma cells with purified, cyropreserved Pv spz from the same lot, quantitate the primary outcome variable of infected hepatoma cells and demonstrate the inhibitory activity of primaquine on the infected hepatoma cells. We have also identified small parasite forms that may be hypnozoites. These data provide the foundation for finalizing a medium throughput, high content assay to identify new drugs for the elimination of all Pv liver stages.


Assuntos
Fígado/efeitos dos fármacos , Fígado/metabolismo , Malária Vivax/metabolismo , Animais , Anopheles/parasitologia , Antimaláricos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/parasitologia , Criopreservação , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/parasitologia , Humanos , Técnicas In Vitro , Microscopia de Fluorescência/métodos , Pan troglodytes , Plasmodium vivax/metabolismo , Primaquina/farmacologia , Glândulas Salivares/metabolismo , Esporozoítos/química
12.
PLoS Negl Trop Dis ; 4(4): e653, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20386602

RESUMO

BACKGROUND: Up to 40% of the world's population is at risk for Plasmodium vivax malaria, a disease that imposes a major public health and economic burden on endemic countries. Because P. vivax produces latent liver forms, eradication of P. vivax malaria is more challenging than it is for P. falciparum. Genetic analysis of P. vivax is exceptionally difficult due to limitations of in vitro culture. To overcome the barriers to traditional molecular biology in P. vivax, we examined parasite transcriptional changes in samples from infected patients and mosquitoes in order to characterize gene function, define regulatory sequences and reveal new potential vaccine candidate genes. PRINCIPAL FINDINGS: We observed dramatic changes in transcript levels for various genes at different lifecycle stages, indicating that development is partially regulated through modulation of mRNA levels. Our data show that genes involved in common biological processes or molecular machinery are co-expressed. We identified DNA sequence motifs upstream of co-expressed genes that are conserved across Plasmodium species that are likely binding sites of proteins that regulate stage-specific transcription. Despite their capacity to form hypnozoites we found that P. vivax sporozoites show stage-specific expression of the same genes needed for hepatocyte invasion and liver stage development in other Plasmodium species. We show that many of the predicted exported proteins and members of multigene families show highly coordinated transcription as well. CONCLUSIONS: We conclude that high-quality gene expression data can be readily obtained directly from patient samples and that many of the same uncharacterized genes that are upregulated in different P. vivax lifecycle stages are also upregulated in similar stages in other Plasmodium species. We also provide numerous examples of how systems biology is a powerful method for determining the likely function of genes in pathogens that are neglected due to experimental intractability.


Assuntos
Culicidae/parasitologia , Perfilação da Expressão Gênica , Estágios do Ciclo de Vida , Malária Vivax/parasitologia , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Animais , Humanos
13.
Vaccine ; 27(27): 3675-80, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19071177

RESUMO

We are developing a radiation attenuated Plasmodium falciparum sporozoite (PfSPZ) malaria vaccine. An important step was to determine the minimum dose of irradiation required to adequately attenuate each sporozoite. This was studied in the Plasmodium yoelii rodent model system. Exposure to 100 Gy completely attenuated P. yoelii sporozoites (PySPZ). Next we demonstrated that immunization of mice intravenously with 3 doses of 750 PySPZ that had received 200 Gy, double the radiation dose required for attenuation, resulted in 100% protection. These results support the contention that a radiation attenuated sporozoite vaccine for malaria will be safe and effective at a range of radiation doses.


Assuntos
Vacinas Antimaláricas/efeitos da radiação , Plasmodium yoelii/imunologia , Esporozoítos/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Feminino , Imunização , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Segurança , Esporozoítos/imunologia , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/efeitos da radiação
14.
Exp Parasitol ; 118(2): 247-52, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17935717

RESUMO

Humans immunized by the bites of irradiated Plasmodium falciparum (Pf) sporozoite-infected mosquitoes are protected against malaria. Radiation attenuates the sporozoites preventing them from fully developing and replicating in hepatocytes, but the effects of radiation on gene expression in sporozoites are unknown. We used RT-PCR (35 cycles of PCR followed by densitometry) to assess the expression of ten genes in Pf sporozoites, and in sporozoites irradiated with 15,000cGy. Irradiation reduced expression substantially (>60%) of two DNA repair genes; moderately (30-60%) of PfUIS3, the Pf orthologue of PbUIS3, a gene up-regulated in Plasmodium berghei sporozoites and of a third DNA repair gene; and minimally (<30%) of the Pf18S ribosomal RNA, PfCSP, PfSSP2/TRAP, and PfCELTOS genes. Irradiation increased expression of PfSPATR minimally. PfLSA1 RNA was not detectable in sporozoites. These results establish that radiation of sporozoites affects gene expression levels and provide the foundation for studies to identify specific genes involved in attenuation and protective immunity.


Assuntos
Expressão Gênica/efeitos da radiação , Plasmodium falciparum/efeitos da radiação , Animais , Reparo do DNA/genética , DNA Complementar/análise , DNA Complementar/biossíntese , Vacinas Antimaláricas , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , RNA Ribossômico 18S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esporozoítos/efeitos da radiação , Vacinas Atenuadas
15.
Expert Opin Drug Saf ; 6(5): 505-21, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17877439

RESUMO

Antimalarial drugs remain the major intervention tool for the global malaria control efforts that save millions of lives. Nonetheless, emergence and spread of Plasmodium parasites resistant against chloroquine and other major antimalarial drugs has brought the urgency to develop a new generation of safe and effective drugs against malaria. In this article, the safety data for major antimalarial drugs is reviewed. Although an ample amount of clinical data regarding the safety and tolerability of several of these drugs in older children and adults is available, more critical safety and tolerability studies in pregnant women and young children is desirable. To offset the partial loss in efficacy due to drug resistance in malaria parasites acquired against specific drugs, treatment regimens often rely upon the combination of two or more drugs. However, combination therapy requires additional safety, toxicity and tolerability studies in all population groups where these drugs are administered. A uniform standard in assessing the safety and tolerability of antimalarial drugs will be useful in the formulation and implementation of malaria treatment policies that are based on the drug effectiveness, safety and tolerability.


Assuntos
Antimaláricos/efeitos adversos , Malária/tratamento farmacológico , Animais , Antimaláricos/farmacocinética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/fisiologia , Humanos , Malária/imunologia , Malária/metabolismo , Malária/prevenção & controle , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/farmacocinética
16.
J Biol Chem ; 280(21): 20524-9, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15781464

RESUMO

Circumsporozoite, a predominant surface protein, is involved in invasion of liver cells by Plasmodium sporozoites, which leads to malaria. We have previously reported that the amino terminus region (amino acids 27-117) of P. falciparum circumsporozoite protein plays a critical role in the invasion of liver cells by the parasite. Here we show that invasion-blocking antibodies are induced by a polypeptide encoding these 91 amino acids, only when it is presented in the absence of the rest of the protein. This suggests that when present in the whole protein, the amino terminus remains immunologically cryptic. A single reactive epitope was identified and mapped to a stretch of 21 amino acids from position 93 to 113. The epitope is configurational in nature, since its recognition was affected by deleting as little as 3 amino acids from either end of the 21-residue peptide. Lysine 104, the only known polymorphic position in the epitope, affected its recognition by the antibodies, and its conversion to leucine in the protein led to a substantial loss of binding activity of the protein to the hepatocytes. This indicated that in the protein, the epitope serves as a binding ligand and facilitates the interaction between sporozoite and hepatic cells. When considered along with the observation that in its native state this motif is immunologically unresponsive, we suggest that hiding functional moieties of the protein from the immune system is an evasion strategy to preserve liver cell binding function and may be of importance in designing anti-sporozoite vaccines.


Assuntos
Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Fígado/imunologia , Fígado/parasitologia , Plasmodium falciparum , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Carcinoma Hepatocelular , Imunofluorescência , Humanos , Neoplasias Hepáticas , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmodium falciparum/química , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Reação em Cadeia da Polimerase , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/patogenicidade , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Infect Immun ; 73(9): 5402-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16113256

RESUMO

Proteins present on the surface of malaria parasites that participate in the process of invasion and adhesion to host cells are considered attractive vaccine targets. Aided by the availability of the partially completed genome sequence of the simian malaria parasite Plasmodium knowlesi, we have identified a 786-bp DNA sequence that encodes a 262-amino-acid-long protein, containing an altered version of the thrombospondin type I repeat domain (SPATR). Thrombospondin type 1 repeat domains participate in biologically diverse functions, such as cell attachment, mobility, proliferation, and extracellular protease activities. The SPATR from P. knowlesi (PkSPATR) shares 61% and 58% sequence identity with its Plasmodium falciparum and Plasmodium yoelii orthologs, respectively. By immunofluorescence analysis, we determined that PkSPATR is a multistage antigen that is expressed on the surface of P. knowlesi sporozoite and erythrocytic stage parasites. Recombinant PkSPATR produced in Escherichia coli binds to a human hepatoma cell line, HepG2, suggesting that PkSPATR is a parasite ligand that could be involved in sporozoite invasion of liver cells. Furthermore, recombinant PkSPATR reacted with pooled sera from P. knowlesi-infected rhesus monkeys, indicating that native PkSPATR is immunogenic during infection. Further efficacy evaluation studies in the P. knowlesi-rhesus monkey sporozoite challenge model will help to decide whether the SPATR molecule should be developed as a vaccine against human malarias.


Assuntos
Antígenos de Protozoários/genética , Proteínas de Membrana/genética , Plasmodium knowlesi/genética , Proteínas de Protozoários/genética , Trombospondinas/química , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/metabolismo , Sequência de Bases , Clonagem Molecular , Imunofluorescência , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Plasmodium knowlesi/química , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Sequências Repetitivas de Aminoácidos , Alinhamento de Sequência , Trombospondinas/genética
18.
Infect Immun ; 71(2): 597-604, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12540535

RESUMO

Naturally acquired antibodies to Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1), the variant surface antigens expressed on the surface of infected erythrocytes, are thought to play a role in protection against P. falciparum malaria. Here, we have studied the development of antibodies to PfEMP-1 in adult malaria patients living in Rourkela, India, an area with a low malaria transmission rate, and prevalence of antibodies to PfEMP-1 in residents of San Dulakudar, India, a village in which P. falciparum malaria is hyperendemic. Convalescent-phase sera from adult malaria patients from Rourkela agglutinate homologous P. falciparum isolates as well as some heterologous isolates, suggesting that they develop partially cross-reactive antibodies to PfEMP-1 following infection. Adult sera from San Dulakudar agglutinate diverse P. falciparum isolates, suggesting that they have antibodies with wide recognition of diverse PfEMP-1. Mixed-agglutination assays using pairs of P. falciparum isolates confirm the presence of both variant-specific and partially cross-reactive antibodies in convalescent-phase sera from Rourkela and adult sera from San Dulakudar. Analysis of PfEMP-1 sequences suggests a molecular basis for the observed cross-reactivity.


Assuntos
Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Variação Antigênica , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adulto , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Reações Cruzadas , Eritrócitos/parasitologia , Testes de Hemaglutinação , Humanos , Índia , Lactente , Malária Falciparum/parasitologia , Dados de Sequência Molecular , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Análise de Sequência de DNA
19.
Infect Immun ; 72(3): 1594-602, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14977966

RESUMO

We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens.


Assuntos
Antígenos de Protozoários/genética , Vacinas Antimaláricas/genética , Plasmodium yoelii/genética , Plasmodium yoelii/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Sequência de Bases , Biolística , Clonagem Molecular , Primers do DNA , DNA de Protozoário/genética , Éxons , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Genoma de Protozoário , Humanos , Injeções Intramusculares , Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Plasmodium yoelii/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/farmacologia
20.
J Biol Chem ; 278(28): 25977-81, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12716913

RESUMO

The annotated sequence of chromosome 2 of Plasmodium falciparum was examined for genes encoding proteins that may be of interest for vaccine development. We describe here the characterization of a protein with an altered thrombospondin Type I repeat domain (PfSPATR) that is expressed in the sporozoite, asexual, and sexual erythrocytic stages of the parasite life cycle. Immunoelectron microscopy indicated that this protein was expressed on the surface of the sporozoites and around the rhoptries in the asexual erythrocytic stage. An Escherichia coli-produced recombinant form of the protein bound to HepG2 cells in a dose-dependent manner and antibodies raised against this protein blocked the invasion of sporozoites into a transformed hepatoma cell line. Sera from Ghanaian adults and from a volunteer who had been immunized with radiation-attenuated P. falciparum sporozoites specifically recognized the expression of this protein on transfected COS-7 cells. These data support the evaluation of this protein as a vaccine candidate.


Assuntos
Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Trombospondinas/química , Sequência de Aminoácidos , Animais , Células COS , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Clonagem Molecular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Humanos , Malária/sangue , Camundongos , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/biossíntese , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA