Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Entropy (Basel) ; 20(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-33265634

RESUMO

In thin polymeric layers, external molecular analytes may well be confined within tiny surface nano/microcavities, or they may be attached to ligand adhesion binding sites via electrical dipole forces. Even though molecular trapping is followed by a variation of the entropic potential, the experimental evidence of entropic energy variation from molecular confinement is scarce because tiny thermodynamic energy density diverseness can be tracked only by sub-nm surface strain. Here, it is shown that water confinement within photon-induced nanocavities in Poly (2-hydroxyethyl methacrylate), (PHEMA) layers could be trailed by an entropic potential variation that competes with a thermodynamic potential from electric dipole attachment of molecular adsorbates in polymeric ligands. The nano/microcavities and the ligands were fabricated on a PHEMA matrix by vacuum ultraviolet laser photons at 157 nm. The entropic energy variation during confinement of water analytes on the photon processed PHEMA layer was monitored via sub-nm surface strain by applying white light reflectance spectroscopy, nanoindentation, contact angle measurements, Atomic Force Microscopy (AFM) imaging, and surface and fractal analysis. The methodology has the potency to identify entropic energy density variations less than 1 pJm-3 and to monitor dipole and entropic fields on biosurfaces.

2.
Biomacromolecules ; 14(4): 993-1002, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23439033

RESUMO

The ability to spatially deposit multiple biomolecules onto a single surface with high-resolution while retaining biomolecule stability and integrity is critical to the development of micro- and nanoscale biodevices. While conventional lithographic patterning methods are attractive for this application, they typically require the use of UV exposure and/or harsh solvents and imaging materials, which may be damaging to fragile biomolecules. Here, we report the development of a new patterning process based on a fluorinated patterning material that is soluble in hydrofluoroether solvents, which we show to be benign to biomolecules, including proteins and DNA. We demonstrate the implementation of these materials into an orthogonal processing system for patterning multibiomolecule arrays by imprint lithography at room temperature. We further showcase this method's capacity for fabricating patterns of receptor-specific ligands for fundamental cell studies.


Assuntos
DNA/metabolismo , Impressão Molecular/métodos , Proteínas/química , Animais , Anticorpos Monoclonais/metabolismo , Linhagem Celular Tumoral , DNA/química , Hibridização Genética , Leucemia Basofílica Aguda , Metacrilatos/química , Metacrilatos/metabolismo , Nanotecnologia , Proteínas/metabolismo , Ratos , Estreptavidina/metabolismo , Propriedades de Superfície
3.
Macromol Biosci ; 23(1): e2200301, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189866

RESUMO

Surfaces for guided cell adhesion and growth are indispensable in several diagnostic and therapeutic applications. Towards this direction, four diblock copolymers comprising polyethylene glycol (PEG) and poly(2-tetrahydropyranyl methacrylate) (PTHPMA) are synthesized employing PEG macroinitiators of different chain lengths. The copolymer with a 5000 Da PEG block and a PEG-PTHPMA comonomers weight ratio of 43-57 provides a film with the highest stability in the culture medium and the strongest cell repellent properties. This copolymer is used to develop a positive photolithographic material and create stripe patterns onto silicon substrates. The highest selectivity regarding smooth muscle cell adhesion and growth and the highest fidelity of adhered cells for up to 3 days in culture is achieved for stripe patterns with widths between 25 and 27.5 µm. Smooth muscle cells cultured on such patterned substrates exhibit a decrease in their proliferation rate and nucleus area and an increase in their major axis length, compared to the cells cultured onto non-patterned substrates. These alterations are indicative of the adoption of a contractile rather than a synthetic phenotype of the smooth muscle cells grown onto the patterned substrates and demonstrate the potential of the novel photolithographic material and patterning method for guided cell adhesion and growth.


Assuntos
Polietilenoglicóis , Polímeros , Polietilenoglicóis/química , Adesão Celular/fisiologia , Polímeros/farmacologia , Polímeros/química
4.
Polymers (Basel) ; 15(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771794

RESUMO

Fluorinated polymers have unique wettability and protein adsorption properties. The site-specific alteration of these properties could expand their application to different research areas. In this work, a fluorinated homopolymer and two of its copolymers with 4-vinylbenzyl glycidyl ether (VBGE) are synthesized by free radical polymerization. The produced polymers are then used to develop resist formulations by the addition of a photoacid generator. Films of these formulations are exposed to ultraviolet radiation through a binary mask and heated to create the pattern. It is found that the water contact angle values of the exposed films areas are reduced compared to those of the unexposed ones, with the exception of pentafluorophenyl methacrylate (PFMA) homopolymer film. This is attributed to the reaction of the epoxy groups creating x-links and producing hydroxyl groups and the cleavage of the pentafluorophenyl group from the ester group leading to carboxylic acid groups. Both modifications on the exposed areas are verified by FTIR spectroscopy and ToF-SIMS analysis. In addition, the biomolecules adsorption ability of the exposed area is increasing 10-15 times compared to the unexposed one for the PFMA homopolymer and the PFMA/VBGE 1:1 copolymer. Thus, the proposed polymers and patterning procedure could find application to spatially directed immobilization of biomolecules and/or cells onto a surface for both biosensing and tissue engineering purposes.

5.
Nanomaterials (Basel) ; 11(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803056

RESUMO

Polymer nanocomposites have emerged as a new powerful class of materials because of their versatility, adaptability and wide applicability to a variety of fields. In this work, a facile and cost-effective method to develop poly(methyl methacrylate) (PMMA)-based polymer nanocomposites with copper oxide (CuO) nanofillers is presented. The study concentrates on finding an appropriate methodology to realize CuO/PMMA nanocomposites that could be used as resist materials for e-beam lithography (EBL) with the intention of being integrated into nanodevices. The CuO nanofillers were synthesized via a low-cost chemical synthesis, while several loadings, spin coating conditions and two solvents (acetone and methyl ethyl ketone) were explored and assessed with regards to their effect on producing CuO/PMMA nanocomposites. The nanocomposite films were patterned with EBL and contrast curve data and resolution analysis were used to evaluate their performance and suitability as a resist material. Micro-X-ray fluorescence spectroscopy (µ-XRF) complemented with XRF measurements via a handheld instrument (hh-XRF) was additionally employed as an alternative rapid and non-destructive technique in order to investigate the uniform dispersion of the nanofillers within the polymer matrix and to assist in the selection of the optimum preparation conditions. This study revealed that it is possible to produce low-cost CuO/PMMA nanocomposites as a novel resist material without resorting to complicated preparation techniques.

6.
Colloids Surf B Biointerfaces ; 187: 110675, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31810566

RESUMO

The enrichment of cancer cell population when in mixtures with normal ones is of great importance for cancer diagnosis. In this work, poly(methyl methacrylate) films have been processed applying different oxygen plasma conditions to fabricate surfaces with structure height ranging from 22 to more than 2000 nm. The surfaces were then evaluated with respect to adhesion and proliferation of both normal and cancer human cells. In particular, normal skin and lung fibroblasts, and four different cancer cell lines, A431 (skin cancer), HT1080 (fibrosarcoma), A549 (lung cancer), and PC3 (prostate cancer), have been employed. It was found that adhesion and proliferation of cancer cells was favored when cultured onto the hierarchical micro/nanostructured surfaces as compared to untreated ones with the maximum values obtained for substrates treated at -100 V for 3 min. On the other hand, although the adhesion of normal fibroblasts was not influenced by the micro/nanostructured surfaces, their morphology and proliferation was significantly impaired, especially after 3-day culture on these surfaces. The reduced proliferation rate of adherent fibroblasts was linked to reduced focal points formation, as it was verified through vinculin staining, and not to apoptosis. The micro/nanostructured surfaces prepared with plasma treatment at -100 V for 3 min (hierarchical topography with mean height of ∼800 nm) were selected as substrates for normal and cancer cell co-culture experiments. It was found that 25-80 times enrichment of cancer over the normal cells was achieved on the nanostructured surfaces after 3-day culture, while it was 5-8 times lower on the untreated ones. It should be noticed that this is the first time such high enrichment ratios are achieved without implementing surfaces modified with binding molecules specific for cancer cells. Thus, the nanostructured surfaces hold a strong promise as culture substrates for separation and enrichment of cancer cells from mixtures with normal ones that should find application in cancer diagnostics.


Assuntos
Adesão Celular , Técnicas de Cultura de Células/métodos , Proliferação de Células , Fibroblastos/citologia , Nanoestruturas/química , Polímeros/química , Polimetil Metacrilato/química , Linhagem Celular Tumoral , Forma Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Neoplasias/diagnóstico , Oxigênio/química , Propriedades de Superfície
7.
Nanomaterials (Basel) ; 10(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498312

RESUMO

Molecules near surfaces are regularly trapped in small cavitations. Molecular confinement, especially water confinement, shows intriguing and unexpected behavior including surface entropy adjustment; nevertheless, observations of entropic variation during molecular confinement are scarce. An experimental assessment of the correlation between surface strain and entropy during molecular confinement in tiny crevices is difficult because strain variances fall in the nanometer scale. In this work, entropic variations during water confinement in 2D nano/micro cavitations were observed. Experimental results and random walk simulations of water molecules inside different size nanocavitations show that the mean escaping time of molecular water from nanocavities largely deviates from the mean collision time of water molecules near surfaces, crafted by 157 nm vacuum ultraviolet laser light on polyacrylamide matrixes. The mean escape time distribution of a few molecules indicates a non-thermal equilibrium state inside the cavity. The time differentiation inside and outside nanocavities reveals an additional state of ordered arrangements between nanocavities and molecular water ensembles of fixed molecular length near the surface. The configured number of microstates correctly counts for the experimental surface entropy deviation during molecular water confinement. The methodology has the potential to identify confined water molecules in nanocavities with life science importance.

8.
Colloids Surf B Biointerfaces ; 178: 208-213, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30856590

RESUMO

The patterning of organic materials on solid substrate surfaces has been demonstrated by several methods, such as photolithography, soft lithography, imprint lithography and ink-jet printing. Fluorinated polymers and solvents provide attractive material systems to develop new patterning approaches, as they are chemically orthogonal to non-fluorinated organic molecules, allowing their efficient incorporation in different devices and systems. Moreover, fluorinated polymers are soluble in hydrofluoroether solvents, benign to biomolecules, and can be properly engineered to enable efficient photolithographic patterning. In this work, we report the development of a new photolithographic process for patterning biomolecules on any kind of surfaces either by physical adsorption or covalent bonding. The photoresist is based on a fluorinated material and hydrofluoroether solvents that have minimum interactions with biomolecules and thus they can be characterized as orthogonal to the biomolecules (bio-orthogonal). In both cases, the creation of patterns with dimensions down to 2 µm was achieved. The implementation of the developed photolithographic procedure for the creation of a multi-protein microarray is demonstrated.


Assuntos
Nanotecnologia/métodos , Polímeros/química , Impressão/métodos , Análise Serial de Proteínas , Solventes/química
9.
J Am Chem Soc ; 130(35): 11564-5, 2008 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-18686954

RESUMO

An acid-sensitive semiperfluoroalkyl resorcinarene was synthesized, and its lithographic properties were evaluated. Its solubility in segregated hydrofluoroether solvents enables the patterning of delicate organic electronic materials.


Assuntos
Calixarenos/química , Eletrônica/métodos , Hidrocarbonetos Fluorados/química , Fenilalanina/análogos & derivados , Calixarenos/síntese química , Eletroquímica/métodos , Hidrocarbonetos Fluorados/síntese química , Fenilalanina/síntese química , Fenilalanina/química
10.
Biosens Bioelectron ; 22(9-10): 1994-2002, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17027250

RESUMO

The last years, there is a steadily growing demand for methods and materials appropriate to create patterns of biomolecules for bioanalytical applications. Here, a photolithographic method for patterning biomolecules onto a silicon surface coated with a polymeric layer of high protein binding capacity is presented. The patterning process does not affect the polymeric film and the activity of the immobilized onto the surface biomolecules. Therefore, it permits sequential immobilization of different biomolecules on spatially distinct areas on the same solid support. The polymeric layer is based on a commercially available photoresist (AZ5214) that is cured at high temperature in order to provide a stable substrate for creation of protein microarrays by the developed photolithographic process. The photolithographic material consists of a (meth)acrylate copolymer and a sulfonium salt as a photoacid generator, and it is lithographically processed by thermal treatment at temperatures

Assuntos
Ácidos Polimetacrílicos , Análise Serial de Proteínas/instrumentação , Silício , Animais , Bovinos , Coelhos
11.
Tissue Eng Part C Methods ; 18(9): 667-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22435738

RESUMO

Commercially available permeable supports with microporous membranes have led to significant improvements in the culture of polarized cells because they permit them to feed basolaterally and thus carry out metabolism in a more in vivo-like setting. The porous nature of these membranes enables permeability measurements of drugs or biomolecules across the cellular barrier. However, current porous membranes have a high flow resistance due to great thickness (20-40 µm), low porosity, and a wide pore size distribution with tortuous diffusion paths, which make them low-throughput for permeability studies. Here we describe an alternate platform that is more flexible, allows for more control over physical parameters of the membranes, and is high-throughput. This study reports on the synthesis, nanofabrication, and surface characterization of a 3-µm-thick transparent membrane based on poly(4-hydroxy styrene) (PHOST). The membranes are nanofabricated using electron beam lithography and deep ion plasma etching to achieve an organized array of straight pores from 50 to 800 nm in diameter, with at least 23 times less flow resistance. It also shows for the first time the potential utility of PHOST as a cell culture substrate without cytotoxicity, and suitability for nanofabrication processes due to temperature stability.


Assuntos
Poliestirenos/química , Engenharia Tecidual/instrumentação , Animais , Astrócitos/citologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Difusão , Imuno-Histoquímica/métodos , Espectroscopia de Ressonância Magnética/métodos , Membranas Artificiais , Modelos Químicos , Nanoestruturas/química , Nanotecnologia/métodos , Permeabilidade , Polímeros/química , Porosidade , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura , Engenharia Tecidual/métodos
12.
Biosens Bioelectron ; 25(9): 2115-21, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20356728

RESUMO

Microfabrication permits the incorporation of dense electrode arrays in microsystems and small volume diagnostic devices. However, the specific functionalization of arbitrary shape electrodes with different biomolecules remains a challenging issue. In the present work, the problem of fabricating closely spaced microelectrodes (20 microm sensor diameter and 20 microm-spaced interdigitated electrodes array) that can be modified selectively in order to create multi-analyte sensor arrays is addressed by employing a biomolecule friendly photolithographic procedure for the sequential immobilization of different biomolecules onto separated electrodes of the same array. The concept was demonstrated with selective detection of oligonucleotides for breast cancer gene mutation detection, the hormone T4 detected with specific antibodies and sarcosine and glucose detected with specific enzymes immobilized in two-analyte arrays in order to assure that the method is compatible with all the types of biorecognition molecules used in biosensors. Electrochemical techniques were used in this array, because of the low cost, high sensitivity and easy miniaturization of these transducers. Although the array was composed of only two sets of electrodes, the results demonstrate that the method proposed is generic and could be used for patterning of electrochemical multi-analyte biosensors at even higher resolution.


Assuntos
Técnicas Biossensoriais/instrumentação , Análise em Microsséries/instrumentação , DNA/análise , DNA/genética , Técnicas Eletroquímicas , Enzimas Imobilizadas , Genes BRCA1 , Humanos , Imunoensaio/instrumentação , Microeletrodos , Microtecnologia , Mutação , Fotografação , Tiroxina/análise
13.
ACS Appl Mater Interfaces ; 1(10): 2363-70, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20355874

RESUMO

We report a new approach to solution-processable low-dielectric-constant (low-k) materials including photolithographic patterning of these materials in chemically benign and environmentally friendly solvents. A series of semiperfluorinated molecular glasses with styrenic substituents were successfully synthesized. These small molecular materials were thermally stable up to 400 degrees C and also exhibited an amorphous nature, which is essential to forming uniform films. Differential scanning calorimetry studies revealed that a cross-linking reaction occurred in the presence of acid, resulting in the formation of robust polymeric films. Atomic force microscopy images of the cross-linked films showed uniform and pinhole-free surface properties. Dielectric constants determined by a capacitance measurement were 2.6-2.8 (100 kHz) at ambient conditions, which are comparable to other polymeric low-k materials. The incorporation of semiperfluorinated substituents was effective in decreasing the dielectric constant; in particular, the fluorinated alkyl ether structure proved best. In addition, the fluorinated substituents contributed to good solubility in hydrofluoroether (HFE) solvents, which enabled the successful photolithographic patterning of those materials in HFEs down to a submicrometer scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA