Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 18(4): 2695-2701, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442945

RESUMO

Monodispersed and highly luminescence cadmium selenide (CdSe) quantum dots (QDs) have been prepared in a single pot by colloidal reaction method. The QDs were characterized using X-ray diffraction (XRD), Raman Spectroscopy, transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), UV-visible absorption spectroscopy and photoluminescence (PL) spectroscopy to study the structural, morphological, compositional and optical properties. The growth temperature played an important role to control the particle size. The optical wavelength was found to be shifted systematically from 460 nm to 575 nm upon increasing the reaction temperature from 110 °C to 260 °C. The size of CdSe QDs, ~2-4 nm was estimated from absorption data. The emission tail exhibited at higher wavelength in PL measurement for the QDs synthesized for lower reaction temperature revealed the presence of surface trap-states. A cubic crystal structure of CdSe QDs was revealed by XRD analysis. The spherical QDs of size 2 to 4.5 nm were observed from TEM analysis for the samples prepared at 140 °C, 200 °C and 260 °C. The sizes of QDs obtained by TEM are in good agreement with the results obtained from optical and XRD data. High resolution transmission electron microscopy (HRTEM) confirmed the cubic crystal structure of CdSe QDs. The Selected area diffraction (SAD) pattern exhibited diffused ring corresponds to (111), (220) and (311) reflections of cubic structure of CdSe. The compositional analysis studied by EDS revealed the growth of nearly stoichiometric CdSe QDs. The LO1 vibrational mode observed about 202-205 cm-1 decreases the broadening systematically upon increasing the reaction temperature.

2.
Front Chem ; 11: 1166544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674526

RESUMO

The MoS2 nanobelts/Carbon hybrid nanostructure was synthesized by the simple hydrothermal method. The MoS2 nanobelts were distributed in the interlayers of Lemon grass-derived carbon (LG-C), provides the active sites and avoid restacking of the sheets. The structural and morphological characterization of MoS2/LG-C and LG-C were performed by Raman spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electrochemical measurements were studied with cyclic voltammetry, the galvanostatic charge-discharge method, and electrochemical impedance spectroscopy. The specific capacitance of MoS2/LG-C and LG-C exhibits 77.5 F g-1 and 30.1 F g-1 at a current density of 0.5 A g-1. The MoS2/LG-C-based supercapacitor provided the maximum power density and energy density of 273.2 W kg-1 and 2.1 Wh kg-1, respectively. Furthermore, the cyclic stability of MoS2/LG-C was tested using charging-discharging up to 3,000 cycles, confirming only a 71.6% capacitance retention at a current density of 3 A g-1. The result showed that MoS2/LG-C is a superior low-cost electrode material that delivered a high electrochemical performance for the next generation of electrochemical energy storage.

3.
Sci Technol Adv Mater ; 12(2): 025001, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877383

RESUMO

Solution-processed films of 1,4,8,11,15,18,22,25-octakis(hexyl) copper phthalocyanine (CuPc6) were utilized as an active semiconducting layer in the fabrication of organic field-effect transistors (OFETs) in the bottom-gate configurations using chemical vapour deposited silicon dioxide (SiO2) as gate dielectrics. The surface treatment of the gate dielectric with a self-assembled monolayer of octadecyltrichlorosilane (OTS) resulted in values of 4×10-2 cm2 V-1 s-1 and 106 for saturation mobility and on/off current ratio, respectively. This improvement was accompanied by a shift in the threshold voltage from 3 V for untreated devices to -2 V for OTS treated devices. The trap density at the interface between the gate dielectric and semiconductor decreased by about one order of magnitude after the surface treatment. The transistors with the OTS treated gate dielectrics were more stable over a 30-day period in air than untreated ones.

4.
Environ Sci Pollut Res Int ; 28(4): 3928-3941, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894447

RESUMO

ZnO and ZnO:Al thin films have been successfully synthesized by simple solution processable method at low temperature. Highly crystalline (002) preferentially oriented, uniform, and smooth ZnO:Al thin films are produced. The electrical, J-V and C-V, measurements revealed higher current flow and more carrier concentration, respectively, for ZnO:Al samples compared with pristine ZnO. ZnO- and ZnO:Al-based field effect transistors (FETs) were fabricated using SiO2 and TiO2 gate dielectric layers onto flexible plastic, ITO and rigid, p-Si substrates. The ZnO:Al-based FETs measured better transistor performance with both SiO2 and TiO2 gate dielectrics as compared with ZnO-based TFTs. The saturated field effect mobilities 5.78 and 4.96 cm2/Vs were measured for ZnO:Al-based TFTs with SiO2 and TiO2 dielectrics, which reasonably higher than 0.51 and 0.43 cm2/Vs, respectively, measured for pristine ZnO TFTs. The effect of smooth surface and reduced grain boundaries of ZnO:Al layer contributed to measure the low-interface trap density and trap density at grain boundaries. The reported procedure can be applicable to produce large area transparent electronics onto flexible plastic substrates.


Assuntos
Transistores Eletrônicos , Óxido de Zinco , Eletricidade , Óxidos , Dióxido de Silício
5.
Micromachines (Basel) ; 10(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658658

RESUMO

In this work, the topic of the detrimental contact effects in organic thin-film transistors (OTFTs) is revisited. In this case, contact effects are considered as a tool to enhance the characterization procedures of OTFTs, achieving more accurate values for the fundamental parameters of the transistor threshold voltage, carrier mobility and on-off current ratio. The contact region is also seen as a fundamental part of the device which is sensitive to physical, chemical and fabrication variables. A compact model for OTFTs, which includes the effects of the contacts, and a recent proposal of an associated evolutionary parameter extraction procedure are reviewed. Both the model and the procedure are used to assess the effect of the annealing temperature on a nickel-1,4,8,11,15,18,22,25-octakis(hexyl)phthalocyanine (NiPc6)-based OTFT. A review of the importance of phthalocyanines in organic electronics is also provided. The characterization of the contact region in NiPc6 OTFTs complements the results extracted from other physical-chemical techniques such as differential scanning calorimetry or atomic force microscopy, in which the transition from crystal to columnar mesophase imposes a limit for the optimum performance of the annealed OTFTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA