Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Mol Biol ; 109(3): 313-324, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34757519

RESUMO

KEY MESSAGE: The overexpression of RXam2, a cassava NLR (nucleotide-binding leucine-rich repeat) gene, by stable transformation and gene expression induction mediated by dTALEs, reduce cassava bacterial blight symptoms. Cassava (Manihot esculenta) is a tropical root crop affected by different pathogens including Xanthomonas phaseoli pv. manihotis (Xpm), the causal agent of cassava bacterial blight (CBB). Previous studies have reported resistance to CBB as a quantitative and polygenic character. This study sought to validate the functional role of a NLR (nucleotide-binding leucine-rich repeat) associated with a QTL to Xpm strain CIO151 called RXam2. Transgenic cassava plants overexpressing RXam2 were generated and analyzed. Plants overexpressing RXam2 showed a reduction in bacterial growth to Xpm strains CIO151, 232 and 226. In addition, designer TALEs (dTALEs) were developed to specifically bind to the RXam2 promoter region. The Xpm strain transformed with dTALEs allowed the induction of the RXam2 gene expression after inoculation in cassava plants and was associated with a diminution in CBB symptoms. These findings suggest that RXam2 contributes to the understanding of the molecular basis of quantitative disease resistance.


Assuntos
Manihot , Xanthomonas , Leucina , Manihot/genética , Nucleotídeos , Doenças das Plantas/microbiologia
2.
J Exp Bot ; 72(14): 5158-5179, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34021317

RESUMO

The CGIAR crop improvement (CI) programs, unlike commercial CI programs, which are mainly geared to profit though meeting farmers' needs, are charged with meeting multiple objectives with target populations that include both farmers and the community at large. We compiled the opinions from >30 experts in the private and public sector on key strategies, methodologies, and activities that could the help CGIAR meet the challenges of providing farmers with improved varieties while simultaneously meeting the goals of: (i) nutrition, health, and food security; (ii) poverty reduction, livelihoods, and jobs; (iii) gender equality, youth, and inclusion; (iv) climate adaptation and mitigation; and (v) environmental health and biodiversity. We review the crop improvement processes starting with crop choice, moving through to breeding objectives, production of potential new varieties, selection, and finally adoption by farmers. The importance of multidisciplinary teams working towards common objectives is stressed as a key factor to success. The role of the distinct disciplines, actors, and their interactions throughout the process from crop choice through to adoption by farmers is discussed and illustrated.


Assuntos
Agricultura , Fazendeiros , Humanos
3.
Subcell Biochem ; 79: 295-307, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27485227

RESUMO

Epigenetic mechanisms are able to regulate plant development by generating non-Mendelian allelic interactions. An example of these are the responses to environmenal stimuli that result in phenotypic variability and transgression amongst important crop traits. The need to predict phenotypes from genotypes to understand the molecular basis of the genotype-by-environment interaction is a research priority. Today, with the recent discoveries in the field of epigenetics, this challenge goes beyond analyzing how DNA sequences change. Here we review examples of epigenetic regulation of genes involved in carotenoid synthesis and degradation, cases in which histone- and/or DNA-methylation, and RNA silencing at the posttranscriptional level affect carotenoids in plants.


Assuntos
Carotenoides/genética , Metilação de DNA/genética , Epigênese Genética , Desenvolvimento Vegetal/genética , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Interação Gene-Ambiente , Genótipo , Histonas/genética , Histonas/metabolismo , Fenótipo , Interferência de RNA
4.
J Therm Biol ; 52: 199-207, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26267515

RESUMO

There is convincing evidence that heat-shock proteins (HSP) are upregulated by stress conditions in insects; however, the relative contribution of each HSP gene to the heat-shock response remains unclear. Here we considered the whitefly Bemisia tabaci (MEAM 1), a phloem feeder and invasive species whose molecular stress response is an important mechanism for overcoming heat stress. We assessed the expression of the hsp23, 40, 70 and 90 genes at the mRNA level when submitted to heat shocks of 40 and 44°C/1h (control at 25°C). For this, we evaluated a set of available and suitable reference genes in order to perform data normalization using the real-time polymerase chain reaction (qRT-PCR) technique, and then confirmed the production of HSP70 protein based on Western blot. Results were compared with the hardening capacity of B. tabaci, measured by fitness components as a response to heat shocks, using 40°C as the induction temperature. Three of the four genes (hsp23, 70 and 90) were upregulated by heat stress at mRNA, showing differential expression patterns. Hsp70 expression was confirmed at the protein level. Hardening significantly increased fitness following heat stress, suggesting that HSPs may contribute to hardening capacity in B. tabaci. Potential role of each gene in the heat-shock response for whiteflies is discussed.


Assuntos
Temperatura Corporal/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Hemípteros/fisiologia , Animais , Feminino , Fertilidade , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Masculino , Reação em Cadeia da Polimerase , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Estresse Fisiológico/fisiologia , Análise de Sobrevida , Temperatura
5.
Plant Cell ; 22(10): 3348-56, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20889914

RESUMO

Cassava (Manihot esculenta) is an important staple crop, especially in the arid tropics. Because roots of commercial cassava cultivars contain a limited amount of provitamin A carotenoids, both conventional breeding and genetic modification are being applied to increase their production and accumulation to fight vitamin A deficiency disorders. We show here that an allelic polymorphism in one of the two expressed phytoene synthase (PSY) genes is capable of enhancing the flux of carbon through carotenogenesis, thus leading to the accumulation of colored provitamin A carotenoids in storage roots. A single nucleotide polymorphism present only in yellow-rooted cultivars cosegregates with colored roots in a breeding pedigree. The resulting amino acid exchange in a highly conserved region of PSY provides increased catalytic activity in vitro and is able to increase carotenoid production in recombinant yeast and Escherichia coli cells. Consequently, cassava plants overexpressing a PSY transgene produce yellow-fleshed, high-carotenoid roots. This newly characterized PSY allele provides means to improve cassava provitamin A content in cassava roots through both breeding and genetic modification.


Assuntos
Alquil e Aril Transferases/metabolismo , Manihot/genética , Raízes de Plantas/enzimologia , Vitamina A/biossíntese , Alquil e Aril Transferases/genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase , Manihot/enzimologia , Dados de Sequência Molecular , Pigmentação , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência
6.
Methods Enzymol ; 671: 31-62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35878984

RESUMO

Cassava is a staple food used in many countries around the world, despite deficiencies in micronutrients such as provitamin A carotenoids. Unfortunately, improvement of the cassava nutritional content by use of conventional breeding is slow and difficult. Therefore, there is an urgent need to develop and standardize protocols using biotechnological tools to improve cassava. The Alliance of Biodiversity International and the International Center for Tropical Agriculture (CIAT) have worked on cassava genetic transformation over the last 30 years. Here, we describe, step by step, the procedures used for genetic transformation of cassava variety TMS60444, to improve carotenoids and other traits. This protocol includes stock setup, reagents, media preparation, materials, and equipment, for the genetic transformation of embryogenic tissues. The main expected output in publishing this protocol is to provide the basis for a reproducible and reliable method to genetically modify and/or gene edit Latin American and Asian cassava varieties.


Assuntos
Manihot , Biotecnologia , Carotenoides , Manihot/genética , Engenharia Metabólica , Melhoramento Vegetal
7.
Bio Protoc ; 10(17): e3739, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659399

RESUMO

Genetic transformation is crucial for both investigating gene functions and for engineering of crops to introduce new traits. Rice (Oryza sativa L.) is an important model in plant research, since it is the staple food for more than half of the world's population. As a result, numerous transformation methods have been developed for both indica and japonica rice. Since breeders continuously develop new rice varieties, transformation protocols have to be adapted for each new variety. Here we provide an optimized transformation protocol with detailed tips and tricks for a new African variety Komboka using immature embryos. In Komboka, we obtained an apparent transformation rate of up to 48% for GUS/GFP reporter gene constructs using this optimized protocol. This protocol is also applicable for use with other elite indica rice varieties.

8.
PLoS One ; 12(7): e0181460, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28753668

RESUMO

Cassava is a tropical storage-root crop that serves as a worldwide source of staple food for over 800 million people. Flowering is one of the most important breeding challenges in cassava because in most lines flowering is late and non-synchronized, and flower production is sparse. The FLOWERING LOCUS T (FT) gene is pivotal for floral induction in all examined angiosperms. The objective of the current work was to determine the potential roles of the FT signaling system in cassava. The Arabidopsis thaliana FT gene (atFT) was transformed into the cassava cultivar 60444 through Agrobacterium-mediated transformation and was found to be overexpressed constitutively. FT overexpression hastened flower initiation and associated fork-type branching, indicating that cassava has the necessary signaling factors to interact with and respond to the atFT gene product. In addition, overexpression stimulated lateral branching, increased the prolificacy of flower production and extended the longevity of flower development. While FT homologs in some plant species stimulate development of vegetative storage organs, atFT inhibited storage-root development and decreased root harvest index in cassava. These findings collectively contribute to our understanding of flower development in cassava and have the potential for applications in breeding.


Assuntos
Arabidopsis/metabolismo , Flores/metabolismo , Manihot/crescimento & desenvolvimento , Manihot/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Manihot/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
10.
Acta biol. colomb ; 20(2): 37-46, mayo-ago. 2015. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-743844

RESUMO

Las raíces almacenadoras de yuca representan una fuente importante de almidón. La ruta metabólica del almidón ha sido reconstruida recientemente en yuca gracias a la liberación de la secuencia completa de su genoma. En este estudio se evaluó la expresión de los genes que codifican para las enzimas pululanasa, isoamilasa, α-amilasa, enzima desproporcionante, ADP-glucosa pirofoforilasa, almidón sintasa unida al gránulo, enzima ramificante del almidón y sintasa soluble del almidón, en las raíces almacenadoras de plantas de cinco y 11 meses de edad, en un grupo de cinco variedades de yuca. Se evidenciaron diferencias importantes en la expresión de estos genes entre las variedades evaluadas y entre los dos tiempos. Las variedades CM523-7 y SM1219-2 presentaron uno de los niveles más altos de expresión para los genes ADP-glucosa pirofoforilasa y almidón sintasa unida al gránulo mientras que el gen para α-amilasa fue el más bajo en estas dos variedades. Aunque la variedad TMS60444 presentó niveles de expresión similares en genes implicados en la síntesis de almidón, fue la que presentó el mayor nivel de expresión de la α-amilasa. Estos datos se pueden correlacionar con el relativo bajo contenido de materia seca en esta variedad. Los datos de expresión génica presentados en este trabajo permitirán complementar información sobre actividad enzimática con miras a identificar los elementos más importantes en la acumulación diferencial de almidón entre variedades de yuca.


Cassava storage roots represent an important starch source. Recently, the starch metabolic pathway in cassava has been reconstructed thanks to the full release of its genome. In this study gene expression was evaluated for genes coding pullulanase, isoamylase, α-amylase, deproportionating enzyme, ADP-glucose pyrophosphorylase, granule bound starch synthase, starch branching enzyme and soluble starch synthase, in cassava storage roots five and 11 months old, in five cassava varieties. Important gene expression differences were detected both at the variety and time level. CM523-7 and SM1219-2 showed one of the highest expression levels for AGPase and GBSS genes, while α-amylase showed the lowest level in these two varieties. TMS60444 variety showed similar expression levels in starch biosynthesis-related genes, but conversely also showed the highest α-amylase expression. This correlates with the relative low dry-matter content in TMS60444. Gene expression data reported here will allow complementing actual information on enzymatic activity, in order to identify the most relevant factors in differential starch accumulation between cassava varieties.

11.
Rev. colomb. biotecnol ; 14(2): 20-27, dic. 2012. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-671877

RESUMO

La yuca (Manihot esculenta Crantz) es un cultivo de alta importancia en países tropicales. La transformación genética de yuca ha sido posible desde hace 15 años mediante la producción que callo embriogénico friable (CEF) a partir de embriones somáticos. En el presente trabajo se evalúan la inducción de embriones somáticos usando tres diferentes auxinas sintéticas y la producción de CEF a partir de éstos en los cultivares de yuca SG107-35 y BRA685. Estos cultivares son resistentes a la bacteriosis vascular de yuca cuyo agente causal es Xanthomonas axonopodis pv. manihotis, una de las principales limitantes del cultivo. Los resultados obtenidos muestran que en ambos cultivares la hormona Picloram a una concentración de 12 mg/l fue más eficiente que 2,4-D y Dicamba para producir embriones somáticos. Adicionalmente se consiguió la producción de CEF y la regeneración de plantas mediante embriogénesis somática en el cultivar BRA685. Los resultados del presente trabajo son importantes para evaluar la transformabilidad de distintos cultivares de yuca. Actualmente este número es bastante reducido principalmente porque la producción de CEF es fuertemente influenciada por el genotipo. Por tal razón solo se transforma de manera rutinaria y eficiente en el cultivar 60444. La posibilidad de transformación de distintos cultivares de yuca permitirá explotar la enorme variabilidad del cultivo, invitándonos a aumentar los esfuerzos para mejorar y universalizar los protocolos de transformación de yuca.


The cassava (Manihot esculenta Crantz) crop has a very important role as a food, feed and a raw material in developing countries; therefore it is a priority to develop technologies oriented to the solution of problems and agronomic improvement of the crop. The genetic transformation of cassava was developed 15 years ago by producing friable embryogenic callus (FEC) from somatic embryos as target tissue for transformation. In the present work we evaluated the induction of somatic embryos by using three different synthetic auxins and the production of FEC from both SG107-35 and BRA685 cassava cultivars; both are resistant to cassava bacterial blight caused by Xanthomonas axonopodis pv. manihotis, the most important bacterial disease affecting the crop. Our results showed that in both cultivars gave rise to somatic embryos in media containing Picloram at a concentration of 12 mg/l being more efficient than using 2,4-D or Dicamba. Additionally the cultivar BRA685 produced regenerative FEC giving rise to plants through somatic embryogenesis. However compared to the model cultivar 60444, FEC production was greatly lower. This work shows new efforts to increase the number of transformable cultivars of cassava and take advantage of the enormous genetic variability of the crop.


Assuntos
Desenvolvimento Embrionário , Genótipo , Picloram , Yucca , Regeneração
12.
Acta biol. colomb ; 15(1): 3-24, abr. 2010.
Artigo em Espanhol | LILACS | ID: lil-634938

RESUMO

Los combustibles obtenidos a partir de materia vegetal, como el etanol y el biodiesel, están tomando importancia en la dinámica energética mundial, gracias principalmente a que son más económicos y menos contaminantes del medio ambiente que los combustibles fósiles. El mercado de biocombustibles ha producido un incremento en las áreas de cultivo tanto de plantas regularmente usadas como materia prima para su obtención como de aquellas con potencial de ser nuevas fuentes de producción, al igual que ha impulsado la investigación básica orientada hacia el incremento en calidad y producción de diferentes cultivos. Las plantas que almacenan cantidades importantes de almidón, azúcares simples o aceites son el blanco principal para la producción de biocombustibles, aunque nuevas tecnologías están permitiendo la utilización de celulosa como materia prima. El cultivo de yuca (Manihot esculenta) está ampliamente distribuido en toda la zona tropical y es la base alimenticia de cerca del 10% de la población mundial. El alto contenido de almidón en las raíces almacenadoras de la yuca hace de este cultivo una opción para la obtención de etanol. El uso de técnicas de mejoramiento no convencional de variedades de yuca permitirá la generación de plantas más aptas para la industria de biocombustibles. En este artículo de reflexión se revisa el estado actual de los biocombustibles a nivel mundial y nacional, y se comentan los beneficios y retos a afrontar en cuanto a las implicaciones respecto al medio ambiente y la alimentación humana. Finalmente se discute el potencial de la yuca como fuente eficiente de materia prima para la obtención de biocombustibles en Colombia.


Fuels such as ethanol and biodiesel, obtained from plants and their constituents, have recently received the world’s attention as a true alternative to the global energy supply, mainly because they are cheaper and less contaminant of the environment than the currently used, non-renewable fossil fuels. Due to the pushing biofuel market, the world is currently experiencing an increase of agricultural land devoted to grow crops used to obtain them, like maize and sugar cane, as well as crops that have the potential to become new sources of biofuels. Similarly, this emerging market is boosting the basic research oriented towards obtaining better quality and yield in these crops. Plants that store high quantities of starch, simple sugars or oils, are the target of the biofuel industry, although the newest technologies use also cellulose as raw material to produce fuels. Cassava (Manihot esculenta) is widely grown in the tropics and constitutes a staple food for approximately 10% of the world population. The high starch content of its storage roots, together with the use of conventional and non-conventional breeding turn this crop into an option to obtain better adapted varieties for ethanol production. This reflexion article reviews the current status of biofuels worldwide and at the national level, and discusses the benefits and challenges faced in terms of effect on the environment and the human food chain. Finally, it discusses the potential of cassava as a source of raw material for obtaining biofuels in Colombia .

13.
Plant Mol Biol ; 56(4): 671-88, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15630627

RESUMO

The capacity to integrate transgenes into the tropical root crop cassava (Manihot esculenta Crantz) is now established and being utilized to generate plants expressing traits of agronomic interest. The tissue culture and gene transfer systems currently employed to produce these transgenic cassava have improved significantly over the past 5 years and are assessed and compared in this review. Programs are underway to develop cassava with enhanced resistance to viral diseases and insects pests, improved nutritional content, modified and increased starch metabolism and reduced cyanogenic content of processed roots. Each of these is described individually for the underlying biology the molecular strategies being employed and progress achieved towards the desired product. Important advances have occurred, with transgenic plants from several laboratories being prepared for field trails.


Assuntos
Manihot/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Animais , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Previsões , Engenharia Genética/métodos , Engenharia Genética/tendências , Imunidade Inata/genética , Insetos/crescimento & desenvolvimento , Manihot/genética , Manihot/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Vírus de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA