RESUMO
We have designed and synthesised a [Ru(CO)3 Cl2 (NAC)] pro-drug that features an N-acetyl cysteine (NAC) ligand. This NAC carbon monoxide releasing molecule (CORM) conjugate is able to simultaneously release biologically active CO and to ablate the concurrent formation of reactive oxygen species (ROS). Complexes of the general formulae [Ru(CO)3 (L)3 ](2+) , including [Ru(CO)3 Cl(glycinate)] (CORM-3), have been shown to produce ROS through a water-gas shift reaction, which contributes significantly, for example, to their antibacterial activity. In contrast, NAC-CORM conjugates do not produce ROS or possess antibacterial activity. In addition, we demonstrate the synergistic effect of CO and NAC both for the inhibition of nitric oxide (formation) and in the expression of tumour-necrosis factor (TNF)-α. This work highlights the advantages of combining a CO-releasing scaffold with the anti-oxidant and anti-inflammatory drug NAC in a unique pro-drug.
RESUMO
We demonstrate that Ru(II)(CO)2-protein complexes, formed by the reaction of the hydrolytic decomposition products of [fac-RuCl(κ(2)-H2NCH2CO2)(CO)3] (CORM-3) with histidine residues exposed on the surface of proteins, spontaneously release CO in aqueous solution, cells, and mice. CO release was detected by mass spectrometry (MS) and confocal microscopy using a CO-responsive turn-on fluorescent probe. These findings support our hypothesis that plasma proteins act as CO carriers after inâ vivo administration of CORM-3. CO released from a synthetic bovine serum albumin (BSA)-Ru(II)(CO)2 complex leads to downregulation of the cytokines interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α in cancer cells. Finally, administration of BSA-Ru(II)(CO)2 in mice bearing a colon carcinoma tumor results in enhanced CO accumulation at the tumor. Our data suggest the use of Ru(II)(CO)2-protein complexes as viable alternatives for the safe and spatially controlled delivery of therapeutic CO inâ vivo.
Assuntos
Compostos Organometálicos/química , Soroalbumina Bovina/química , Animais , Monóxido de Carbono/análise , Monóxido de Carbono/metabolismo , Bovinos , Linhagem Celular Tumoral , Feminino , Células HeLa , Histidina/química , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Soroalbumina Bovina/metabolismo , Distribuição Tecidual , Transplante Heterólogo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Human Vγ9Vδ2 T cells are potent anti-tumor lymphocytes that specifically respond to pyrophosphate (phospho-) antigens, which constitute the basis of current γδ T-cell-based immunotherapy strategies. Despite a clear involvement of the TCR, the costimulation requirements of Vγ9Vδ2 T cells remain ill-defined. Here, we show that the expression of the CD27 receptor by the vast majority of Vγ9Vδ2 peripheral blood lymphocytes endows them with enhanced proliferative capacity upon ligation by its unique ligand CD70, a tumor necrosis factor superfamily member expressed on lymphoma B-cells but also on TCR-activated γδ T cells. Moreover, Vγ9Vδ2 T-cell treatment with soluble recombinant CD70 induced calcium signals and increased transcription of anti-apoptotic Bcl2a1 and cell-cycle-promoting Cyclin D2 genes. We further demonstrate that the manipulation of CD70-CD27 interactions significantly impacted on Vγ9Vδ2 T-cell survival, proliferation and cytokine secretion, in both loss-of-function and gain-of-function experiments. Thus, CD27 coreceptor signals strongly promoted the expansion of Th1-biased, CD27(+) Vγ9Vδ2 peripheral blood lymphocytes in the context of TCR-mediated stimulation with phosphoantigens. These data collectively establish a novel role for the CD70-CD27 axis in human γδ T-cell activation and hence open new perspectives for its modulation in clinical settings.
Assuntos
Ligante CD27/imunologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Cálcio/imunologia , Comunicação Celular , Proliferação de Células , Sobrevivência Celular/imunologia , Células Cultivadas , Ciclina D2/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Interleucina-2/imunologia , Interleucina-2/farmacologia , Antígenos de Histocompatibilidade Menor , Compostos Organofosforados/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Células Th1/imunologia , Transcrição Gênica/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
γδ T lymphocytes are commonly viewed as embracing properties of both adaptive and innate immunity. Contributing to this is their responsiveness to pathogen products, either with or without the involvement of the TCR and its coreceptors. This study clarifies this paradoxical behavior by showing that these two modes of responsiveness are the properties of two discrete sets of murine lymphoid γδ T cells. Thus, MyD88 deficiency severely impaired the response to malaria infection of CD27((-)), IL-17A-producing γδ T cells, but not of IFN-γ-producing γδ cells. Instead, the latter compartment was severely contracted by ablating CD27, which synergizes with TCRγδ in the induction of antiapoptotic mediators and cell cycle-promoting genes in CD27((+)), IFN-γ-secreting γδ T cells. Hence, innate versus adaptive receptors differentially control the peripheral pool sizes of discrete proinflammatory γδ T cell subsets during immune responses to infection.
Assuntos
Imunidade Adaptativa , Imunidade Inata , Interferon gama/biossíntese , Interleucina-17/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Imunidade Adaptativa/genética , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Imunidade Inata/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium berghei/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Rhadinovirus/imunologia , Transdução de Sinais/genética , Subpopulações de Linfócitos T/parasitologia , Subpopulações de Linfócitos T/virologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiência , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/fisiologiaRESUMO
The repurposing of the CRISPR/Cas bacterial defense system against bacteriophages as simple and flexible molecular tools has revolutionized the field of gene editing. These tools are now widely used in basic research and clinical trials involving human somatic cells. However, a global moratorium on all clinical uses of human germline editing has been proposed because the technology still lacks the required efficacy and safety. Here we focus on the approaches developed since 2013 to decrease the frequency of unwanted mutations (the off-targets) during CRISPR-based gene editing.
RESUMO
BACKGROUND: The family of D cyclins has a fundamental role in cell cycle progression, but its members (D1, D2, D3) are believed to have redundant functions. However, there is some evidence that contradicts the notion of mutual redundancy and therefore this concept is still a matter of debate. RESULTS: Our data show that the cyclin D1 is indispensable for normal hematopoiesis. Indeed, in the absence of D1, either in genetic deficient mice, or after acute ablation by RNA interference, cyclins D2 and D3 are also not expressed preventing hematopoietic cell division and differentiation at its earliest stage. This role does not depend on the cyclin box, but on the carboxyl regulatory domain of D1 coded by exons 4-5, since hematopoietic differentiation is also blocked by the conditional ablation of this region. CONCLUSION: These results demonstrate that not all functions of individual D cyclins are redundant and highlight a master role of cyclin D1 in hematopoiesis.
Assuntos
Diferenciação Celular/genética , Divisão Celular/genética , Ciclina D1/genética , Ciclina D2/genética , Ciclina D3/genética , Hematopoese , Animais , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Ciclina D3/metabolismo , Camundongos , Camundongos TransgênicosRESUMO
We report the design and synthesis of an aquacarbonyl Ru(II) dication cis-[Ru(CO)2(H2O)4](2+) reagent for histidine (His)-selective metallation of interleukin (IL)-8 at site 33. The artificial, non-toxic interleukin (IL)-8-Ru(II)(CO)2 metalloprotein retained IL-8-dependent neutrophil chemotactic activity and was shown to spontaneously release CO in live cells.