Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 406(29): 7533-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24997536

RESUMO

Combinatorial chemistry and high-throughput techniques are an efficient way of exploring optimal values of elemental composition. Optimal composition can result in high performance in a sequence of material synthesis and characterization. Materials combinatorial libraries are typically encountered in the form of a thin film composition gradient which is produced by simultaneous material deposition on a substrate from two or more sources that are spatially separated and chemically different. Fast spatially resolved techniques are needed to characterize structure, composition, and relevant properties of these combinatorial screening samples. In this work, the capability of a glow discharge optical emission spectroscopy (GD-OES) elemental mapping system is extended to nitrogen-based combinatorial libraries with nonconductive components through the use of pulsed radiofrequency power. The effects of operating parameters of the glow discharge and detection system on the achievable spatial resolution were investigated as it is the first time that an rf source is coupled to a setup featuring a push-broom hyperspectral imaging system and a restrictive anode tube GD source. Spatial-resolution optimized conditions were then used to characterize an aluminum nitride/chromium nitride thin-film composition spread. Qualitative elemental maps could be obtained within 16.8 s, orders of magnitude faster than typical techniques. The use of certified reference materials allowed quantitative elemental analysis maps to be extracted from the emission intensity images. Moreover, the quantitative procedure allowed correcting for the inherent emission intensity inhomogeneity in GD-OES. The results are compared to quantitative depth profiles obtained with a commercial GD-OES instrument.

2.
Comput Mater Sci ; 55(3): 211-216, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27570370

RESUMO

The development of interfacial coherency stresses in TiN/AlN bilayer and multilayer films was investigated by finite element method (ABAQUS) using the four-node bilinear quadrilateral axisymmetric element CAX4R. The TiN and AlN layers are always in compression and tension at the interface, respectively, as may be expected from the fact TiN has larger lattice parameter than AlN. Both, the bi-layer and the multilayer stacks bend due to the coherency stresses. For the TiN/AlN bilayer system, the curvature of the bending is largest for the TiN/AlN thickness ratios ∼0.5 and ∼2 (at which one of the two layers is fully in compression or tension), while it is smaller for the layers with the same thickness (at which both layers posses regions with compressive as well as tensile stresses). This stress distribution over the bi-layer thickness is shown to be strongly influenced by the presence and the properties of a substrate. Furthermore, the coherency stress profile and specimen curvature of a TiN/AlN multilayer system was studied as a function of the top-most layer thickness. The curvature is maximum for equal number of TiN and AlN layers, and decreases with increasing the number of TiN/AlN periods. Within the growth of an additional TiN/AlN bilayer, the curvature first decreases to zero for a vertically symmetrical geometry over the layers when the TiN layer growth is finished (e.g. for (n + 1) layers of TiN and n layers of AlN). At this stage, the coherency stresses in TiN and AlN are same in each layer type (independent on the layer position). The growth of the second half of the TiN/AlN bi-layer (i.e. the AlN) to finish the period, again bends the specimen, and generates a non-uniform stress distribution. This suggests that the top layer as well as the overall specimen geometry plays a critical role on the actual coherency stress profile.

3.
Anal Methods ; 14(44): 4495-4513, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36326012

RESUMO

Approaching a nucleic acid amplification test (NAAT) based diagnosis of a pathogen from an electrochemistry pathway is a relatively economical, decentralized, and yet highly sensitive route. This work aimed to construct an electrochemical biosensor with a 2-electrode geometry using a transition metal oxide (TMO) based sensing layer. A series of batch-processed TiO2-V2O5 (TVO) nanocomposite-based electrodes were fabricated to probe their electrochemical performance and attain a highly sensitive dual-electrode electrochemical sensor (DEES) compared to pristine V2O5. The XRD analysis of the electrodes confirmed the formation of a nanocomposite, while the XPS analysis correlated the formation of oxygen vacancies with improved electrical conduction measured via EIS and I-V characterization. Furthermore, the work demonstrated the application of the optimized electrode in electrochemical detection of end-point loop-mediated isothermal amplification (LAMP) readout for 101-104 copies (0.1 zeptomoles to 0.1 attomoles) of SARS-CoV-2 RNA dependent RNA polymerase (RdRp) plasmid DNA and in vitro transcribed RNA in an aqueous solution. The device achieved a limit of detection as low as 2.5 and 0.25 copies per µL for plasmid DNA and in vitro transcribed RNA, respectively. The DEES was able to successfully detect in situ LAMP performed on magneto-extracted SARS-CoV-2 plasmid and RNA from (a) an aqueous solution, (b) a sample spiked with excess human genomic DNA, and (c) a serum-spiked sample. The DEES results were then compared with those of real-time fluorescence and commercially available screen-printed electrodes (SPEs).


Assuntos
COVID-19 , Nanocompostos , Humanos , Titânio , Vanádio , Eletrodos , RNA Viral , SARS-CoV-2 , DNA/análise , Óxidos
4.
Microsc Res Tech ; 85(1): 296-307, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34390538

RESUMO

A study of image analysis of Ti1-x Alx N films deposited on corning glass substrates by a direct current (DC)/radio frequency (RF) magnetron sputtering system was performed. Atomic force microscopy (AFM) data were studied to understand how the impact of the concentration of Al content influences the 3D surface morphology as well as the surface texture parameters. The results showed that the superficial morphology was modified by the increase of Al content in the Ti1-x Alx N films, as well as the surface microtexture. It has also been observed that the Ti1-x Alx N film surface with the highest aluminum (Al) doping concentration presented a similar surface morphology to pristine titanium nitride (TiN) thin films. The Abbott-Firestone curves for all films exhibited an S-like shape suggesting topographic uniformity and Gaussian distribution of heights. An increase in surface uniformity is observed with Al concentration. The characterization of the surface morphology of Ti1-x Alx N films by the evaluation of surface statistical parameters suggests that the surface topography can be adjusted by suitable doping of aluminum and offers a deeper understanding of the applicability of these films.

5.
Nanomaterials (Basel) ; 9(1)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641884

RESUMO

Rapid progress in the performance of organic devices has increased the demand for advances in the technology of thin-film permeation barriers and understanding the failure mechanisms of these material systems. Herein, we report the extensive study of mechanical and gas barrier properties of Al2O3/ZnO nanolaminate films prepared on organic substrates by atomic layer deposition (ALD). Nanolaminates of Al2O3/ZnO and single compound films of around 250 nm thickness were deposited on polyethylene terephthalate (PET) foils by ALD at 90 °C using trimethylaluminium (TMA) and diethylzinc (DEZ) as precursors and H2O as the co-reactant. STEM analysis of the nanolaminate structure revealed that steady-state film growth on PET is achieved after about 60 ALD cycles. Uniaxial tensile strain experiments revealed superior fracture and adhesive properties of single ZnO films versus the single Al2O3 film, as well as versus their nanolaminates. The superior mechanical performance of ZnO was linked to the absence of a roughly 500 to 900 nm thick sub-surface growth observed for single Al2O3 films as well as for the nanolaminates starting with an Al2O3 initial layer on PET. In contrast, the gas permeability of the nanolaminate coatings on PET was measured to be 9.4 × 10-3 O2 cm³ m-2 day-1. This is an order of magnitude less than their constituting single oxides, which opens prospects for their applications as gas barrier layers for organic electronics and food and drug packaging industries. Direct interdependency between the gas barrier and the mechanical properties was not established enabling independent tailoring of these properties for mechanically rigid and impermeable thin film coatings.

6.
Micron ; 84: 37-42, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26925830

RESUMO

The presented scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) results show the strong reaction of Cr and V with the graphitic walls of MWCNTs. For Vanadium, an interfacial VC layer could be observed at the interface between VN and MWCNTs, when the samples were heated in situ to 750°C. Knowledge about this interfacial VC layer is important for the formation of VN-MWCNT hybrid materials, used in supercapacitor electrodes, often synthesized at high temperatures. Chromium reacts at 500°C with the MWCNTs to form Cr3C2 and in some cases, dissolved the MWCNT completely. Together with the previously published results about the interaction of MWCNTs with Cu (no interaction) and Ni (a slight rehybridisation trend for the outermost MWCNT-wall observed with EELS) (Ilari et al., 2015) the influence of the valence d-orbital occupancy of 3d transition metals on the interaction strength with CNTs is shown experimentally. For a transition metal to form chemical bonds towards CNT-walls, unoccupied states in its valence d-orbitals are needed. While Ni (2 unoccupied states) interacts only slightly, Cr (5 unoccupied states) and V (7 unoccupied states) react much stronger and can dissolve the MWCNTs, at least partially.

7.
Nanoscale ; 7(24): 10622-33, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26018433

RESUMO

Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surface coverage of the chemically inert CNTs and appropriate control of the morphology of the TiO2 layer have not been achieved so far. Here, we report a new strategy to obtain ultrathin TiO2 coatings deposited by "Temperature-step" Atomic Layer Deposition (TS-ALD) with complete surface coverage of non-functionalized multiwall carbon nanotubes (MWCNTs) and controlled morphology and crystallinity of the TiO2 film. This strategy consists of adjusting the temperature during the ALD deposition to obtain the desired morphology. Complete coverage of long non-functionalized MWCNTs with conformal anatase layers was obtained by using a low temperature of 60 °C during the nucleation stage followed by an increase to 220 °C during the growth stage. This resulted in a continuous and amorphous TiO2 layer, covered with a conformal anatase coating. Starting with the deposition at 220 °C and reducing to 60 °C resulted in sporadic crystal grains at the CNT/TiO2 interface covered with an amorphous TiO2 layer. The results were accomplished through an extensive study of nucleation and growth of titanium oxide films on MWCNTs, of which a detailed characterization is presented in this work.

8.
Beilstein J Nanotechnol ; 5: 234-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24778944

RESUMO

Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA