Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Cancer Res ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052240

RESUMO

PURPOSE: There are no effective treatment options for patients with aggressive epithelioid hemangioendothelioma (EHE) driven by the TAZ-CAMTA1 (TC) fusion gene. Here, we aimed to understand the regulation of TC using pharmacological tools and identify vulnerabilities that can potentially be exploited for the treatment of EHE. EXPERIMENTAL DESIGN: TC is a transcriptional co-regulator; we hypothesized that compounds that reduce TC nuclear levels, either through translocation of TC to the cytoplasm, or through degradation, would render TC less oncogenic. TC localization was monitored using immunofluorescence (IF) in an EHE tumor cell line. Two target-selective libraries were used to identify small molecules that reduce TC localization in the nucleus. The ability of the shortlisted hits to affect cell viability, apoptosis, and tumorigenesis was also evaluated. RESULTS: Basal TC remained 'immobile' in the nucleus; administration of cyclin-dependent kinase inhibitors (CDKi) such as CGP60474 and dinaciclib mobilized TC. 'Mobile' TC shuttled between the nucleus and cytoplasm; however, it was eventually degraded through proteasomes. This dramatically suppressed the levels of TC-regulated transcripts and cell viability, promoted apoptosis, and reduced the area of metastatic lesions in the allograft model of EHE. We specifically identified that the inhibition of CDK9, a transcriptional CDK, destabilizes TC. CONCLUSIONS: The CDK inhibitor dinaciclib exhibited anti-tumorigenic properties both in vitro and in vivo in EHE models. Dinaciclib has been rigorously tested in clinical trials and displayed an acceptable toxicity profile. Therefore, there is a potential therapeutic window for repurposing dinaciclib for the treatment of EHE.

2.
Clin Cancer Res ; 29(13): 2480-2493, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36598859

RESUMO

PURPOSE: Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma caused by the WWTR1(TAZ)-CAMTA1 (TC) gene fusion. This fusion gene has been observed in almost all reported EHE cases and functions as a constitutively activated TAZ. Sequencing of human tumors has, however, identified additional secondary mutations in approximately 50% of EHE, most commonly the loss of tumor suppressor CDKN2A. In this study, the effect of loss of CDKN2A in EHE tumorigenesis was evaluated. EXPERIMENTAL DESIGN: Mice bearing a conditional TC allele were paired with a conditional Cdkn2a knockout allele and an endothelial-specific Cre. Histologic characterization and single-cell RNA-seq of the resultant tumors were performed. EHE cell lines were established through ex vivo culture of tumor cells and evaluated for sensitivity to TEAD inhibition and trametinib. RESULTS: Loss of Cdkn2a within EHE was associated with more aggressive disease, as displayed by earlier tumor-related morbidity/mortality and enhanced tumor cell proliferation. As no previous EHE cell lines exist, we attempted, successfully, to expand EHE tumor cells ex vivo and produced the first EHE cell lines. These cell lines are "addicted" to the TC oncoprotein, replicate the EHE transcriptional profile, and generate EHE tumors when injected into immunodeficient mice. CONCLUSIONS: CDKN2A loss enhances the tumorigenicity of EHE in vivo and enabled the generation of the first cell lines of this disease. These cell lines replicate key facets of the human disease phenotype. Therefore, these cell lines and allograft tumors generated after implantation serve as robust model systems for therapeutic testing of compounds directed at either EHE or other TAZ-driven cancers.


Assuntos
Hemangioendotelioma Epitelioide , Animais , Humanos , Camundongos , Proteínas de Ligação ao Cálcio/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fusão Gênica , Hemangioendotelioma Epitelioide/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transativadores/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
3.
PLoS One ; 17(4): e0266143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35417479

RESUMO

Disrupting the formation of the oncogenic YAP/TAZ-TEAD transcriptional complex holds substantial therapeutic potential. However, the three protein interaction interfaces of this complex cannot be easily disrupted using small molecules. Here, we report that the pharmacologically active small molecule aurintricarboxylic acid (ATA) acts as a disruptor of the TAZ-TEAD complex. ATA was identified in a high-throughput screen using a TAZ-TEAD AlphaLISA assay that was tailored to identify disruptors of this transcriptional complex. We further used fluorescence polarization assays both to confirm disruption of the TAZ-TEAD complex and to demonstrate that ATA binds to interface 3. We have previously shown that cell-based models that express the oncogenic TAZ-CAMTA1 (TC) fusion protein display enhanced TEAD transcriptional activity because TC functions as an activated form of TAZ. Utilizing cell-based studies and our TC model system, we performed TC/TEAD reporter, RNA-Seq, and qPCR assays and found that ATA inhibits TC/TEAD transcriptional activity. Further, disruption of TC/TEAD and TAZ/TEAD interaction by ATA abrogated anchorage-independent growth, the phenotype most closely linked to dysregulated TAZ/TEAD activity. Therefore, this study demonstrates that ATA is a novel small molecule that has the ability to disrupt the undruggable TAZ-TEAD interface.


Assuntos
Ácido Aurintricarboxílico , Fatores de Transcrição , Proteínas de Fusão Oncogênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Clin Cancer Res ; 28(14): 3116-3126, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35443056

RESUMO

PURPOSE: A consistent genetic alteration in vascular cancer epithelioid hemangioendothelioma (EHE) is the t(1;3)(p36;q25) chromosomal translocation, which generates a WWTR1(TAZ)-CAMTA1 (TC) fusion gene. TC is a transcriptional coactivator that drives EHE. Here, we aimed to identify the TC transcriptional targets and signaling mechanisms that underlie EHE tumorigenesis. EXPERIMENTAL DESIGN: We used NIH3T3 cells transformed with TC (NIH3T3/TC) as a model system to uncover TC-dependent oncogenic signaling. These cells proliferated in an anchorage-independent manner in suspension and soft agar. The findings of the cell-based studies were validated in a xenograft model. RESULTS: We identified connective tissue growth factor (CTGF) as a tumorigenic transcriptional target of TC. We show that CTGF binds to integrin αIIbß3, which is essential for sustaining the anchorage-independent proliferation of transformed NIH3T3/TC cells. NIH3T3/TC cells also have enhanced Ras and MAPK signaling, and the activity of these pathways is reduced upon CTGF knockdown, suggesting that CTGF signaling occurs via the Ras-MAPK cascade. Further, pharmacologic inhibition of MAPK signaling through PD 0325901 and trametinib abrogated TC-driven anchorage-independent growth. Likewise, for tumor growth in vivo, NIH3T3/TC cells require CTGF and MAPK signaling. NIH3T3/TC xenograft growth was profoundly reduced upon CTGF knockdown and after trametinib treatment. CONCLUSIONS: Collectively, our results demonstrated that CTGF and the Ras-MAPK signaling cascade are essential for TC-mediated tumorigenesis. These studies provided the preclinical rationale for SARC033 (NCI 10015-NCT03148275), a nonrandomized, open-label, phase II study of trametinib in patients with unresectable or metastatic EHE.


Assuntos
Hemangioendotelioma Epitelioide , Sarcoma , Adulto , Animais , Proteínas de Ligação ao Cálcio/genética , Carcinogênese/genética , Criança , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Hemangioendotelioma Epitelioide/tratamento farmacológico , Hemangioendotelioma Epitelioide/genética , Humanos , Camundongos , Células NIH 3T3 , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
PLoS One ; 16(7): e0252689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324512

RESUMO

Activating mutations in KIT/PDGFRA receptor tyrosine kinases drive gastrointestinal stromal tumors (GIST). KIT/PDGFRA inhibitors, such as imatinib do not evoke an effective cytocidal response, leaving room for quiescence and development of multiple secondary resistance mutations. As the majority of the secondary resistance clones activate PI3K and MAPK pathways, we investigated whether combined targeting of KIT/PI3K/MAPK (KPM) pathways overcomes drug resistance and quiescence in GIST cells. We monitored the proliferation of imatinib-sensitive and-resistant GIST cell lines after treating them with various combinations of drugs to inhibit KPM pathways. Cytocidal response was evaluated through proliferation, apoptosis and colony outgrowth assays. Combined inhibition of KPM signaling pathways using a KPM inhibitor cocktail decreased the survival of drug-resistant GIST cells and dramatically reduced their proliferation. Downstream pathway analysis showed that the residual PI3K/MAPK signaling observed after KIT inhibitor treatment plays a role in mediating quiescence and drug resistance. The KPM inhibitor cocktail with sunitinib or regorafenib effectively induced apoptosis and prevented colony outgrowth after long-term drug removal, suggesting that it can be used as an effective strategy against quiescence and drug resistance in metastatic GIST.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Mesilato de Imatinib/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Am Chem Soc ; 127(17): 6430-42, 2005 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-15853351

RESUMO

Both the oxygen diffusion rate and the oxygen solubility vary with depth into the interior of biological membranes. The product of these two gradients generates a single gradient, a permeability gradient, which is a smooth continuous function of the distance from the center of the membrane. Using electron paramagnetic resonance and the spin-probe method, the relaxation gradient of oxygen, which is directly proportional to the permeability gradient, is the quantity that can be directly measured in membranes under physiological conditions. The gradient obtained provides a calibrated ruler for determining the membrane depth of residues either from loop regions of membrane-binding proteins or from the membrane-exposed residues of transmembrane proteins. We have determined the relaxation gradient of oxygen in zwitterionic and anionic phospholipid membranes by attaching a single nitroxide probe to a transmembrane alpha-helical polypeptide at specific residues. The peptide ruler was used to determine the depth of penetration of the calcium-binding loops of the C2 domain of cytosolic phospholipase A(2). The positions of selected residues of this membrane-binding protein that penetrate into the membrane, determined using this ruler, compared favorably with previous determinations using more complex methods. The relaxation gradient constrains the possible values of the membrane-dependent oxygen concentration and the oxygen diffusion gradients. The average oxygen diffusion coefficient is estimated to be at least 2-fold smaller in the membrane than that in water.


Assuntos
Proteínas de Membrana/química , Peptídeos/química , Fosfolipases A/química , Citosol/enzimologia , Difusão , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Membrana/metabolismo , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular , Oxigênio/análise , Oxigênio/química , Oxigênio/metabolismo , Peptídeos/metabolismo , Fosfolipases A/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização por Electrospray , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA