Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Funct Mater ; 27(11)2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-29176940

RESUMO

The possibility of regulating cell signaling with high spatial and temporal resolution within individual cells and complex cellular networks has important implications in biomedicine. In this report, we demonstrate a general strategy that uses near-infrared tissue-penetrating laser pulses to uncage biomolecules from plasmonic gold-coated liposomes, i.e. plasmonic liposomes, to activate cell signaling in a non-thermal, ultrafast and highly controllable fashion. Near-infrared picosecond laser pulse induces transient nanobubbles around plasmonic liposomes. The mechanical force generated from the collapse of nanobubbles rapidly ejects encapsulated compound within 0.1 ms. We showed that single pulse irradiation triggers the rapid intracellular uncaging of calcein from plasmonic liposomes inside endo-lysosomes. The uncaged calcein then evenly distributes over the entire cytosol and nucleus. Furthermore, we demonstrated the ability to trigger calcium signaling in both an immortalized cell line and primary dorsal root ganglion (DRG) neurons by intracellular uncaging of inositol triphosphate (IP3), an endogenous cell calcium signaling second messenger. Compared with other uncaging techniques, this ultrafast near-infrared light-driven molecular uncaging method is easily adaptable to deliver a wide range of bioactive molecules with an ultrafast optical switch, enabling new possibilities to investigate signaling pathways within individual cells and cellular networks.

2.
ACS Appl Mater Interfaces ; 12(32): 36688-36694, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32667778

RESUMO

Hexagonal boron nitride (h-BN) has been considered a promising dielectric for two-dimensional (2D) material-based electronics due to its atomically smooth and charge-free interface with an in-plane lattice constant similar to that of graphene. Here, we report atomic layer deposition of boron nitride (ALD-BN) using BCl3 and NH3 precursors directly on thermal SiO2 substrates at a relatively low temperature of 600 °C. The films were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and transmission electron microscopy wherein the uniform, atomically smooth, and nanocrystalline layered-BN thin film growth is observed. The growth rate is ∼0.042 nm/cycle at 600 °C, a temperature significantly lower than that of h-BN grown by chemical vapor deposition. The dielectric properties of the ALD-BN measured from Metal Oxide Semiconductor Capacitors are comparable with that of SiO2. Moreover, the ALD-BN exhibits a 2-fold increase in carrier mobility of graphene field effect transistors (G-FETs/ALD-BN/SiO2) due to the lower surface charge density and inert surface of ALD-BN in comparison to that of G-FETs fabricated on bare SiO2. Therefore, this work suggests that the transfer-free deposition of ALD-BN on SiO2 may be a promising candidate as a substrate for high performance graphene devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA