RESUMO
Avian influenza virus (AIV) in Asia is a complex system with numerous subtypes and a highly porous wild birds-poultry interface. Certain AIV subtypes, such as H14, are underrepresented in current surveillance efforts, leaving gaps in our understanding of their ecology and evolution. The detection of rare subtype H14 in domestic ducks in Southeast Asia comprises a geographic region and domestic bird population previously unassociated with this subtype. These H14 viruses have a complex evolutionary history involving gene reassortment events. They share sequence similarity to AIVs endemic in Cambodian ducks, and Eurasian low pathogenicity and high pathogenicity H5Nx AIVs. The detection of these H14 viruses in Southeast Asian domestic poultry further advances our knowledge of the ecology and evolution of this subtype and reinforces the need for continued, longitudinal, active surveillance in domestic and wild birds. Additionally, in vivo and in vitro risk assessment should encompass rare AIV subtypes, as they have the potential to establish in poultry systems.
Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Patos , Camboja , Filogenia , Aves , Vírus da Influenza A/genética , Animais Selvagens , Aves DomésticasRESUMO
We describe a case of lumpy skin disease in an endangered banteng in Cambodia and the subsequent initiation of a vaccination campaign in domestic cattle to protect wild bovids from disease transmission at the wildlife-livestock interface. Lumpy skin disease virus (LSDV) was first detected in domestic cattle in Cambodia in June of 2021 and rapidly spread throughout the country. In September 2021, a banteng was seen in Phnom Tnout Phnom Pok wildlife sanctuary with signs of lumpy skin disease. Scab samples were collected and tested positive for LSDV. Monitoring using line transect surveys and camera traps in protected areas with critical banteng and gaur populations was initiated from December 2021-October 2022. A collaborative multisector vaccination campaign to vaccinate domestic livestock in and around priority protected areas with banteng and gaur was launched July 2022 and a total of 20,089 domestic cattle and water buffalo were vaccinated with LumpyvaxTM. No signs of LSDV in banteng or gaur in Cambodia have been observed since this initial case. This report documents the first case of lumpy skin disease in wildlife in Cambodia and proposes a potential intervention to mitigate the challenge of pathogen transmission at the domestic-wildlife interface. While vaccination can support local livestock-based economies and promote biodiversity conservation, it is only a component of an integrated solution and One Health approach to protect endangered species from threats at the wildlife-livestock interface.
RESUMO
Wildlife and wildlife interfaces with people and livestock are essential surveillance targets to monitor emergent or endemic pathogens or new threats affecting wildlife, livestock, and human health. However, limitations of previous investments in scope and duration have resulted in a neglect of wildlife health surveillance (WHS) systems at national and global scales, particularly in lower and middle income countries (LMICs). Building on decades of wildlife health activities in LMICs, we demonstrate the implementation of a locally-driven multi-pronged One Health approach to establishing WHS in Cambodia, Lao PDR and Viet Nam under the WildHealthNet initiative. WildHealthNet utilizes existing local capacity in the animal, public health, and environmental sectors for event based or targeted surveillance and disease detection. To scale up surveillance systems to the national level, WildHealthNet relies on iterative field implementation and policy development, capacity bridging, improving data collection and management systems, and implementing context specific responses to wildlife health intelligence. National WHS systems piloted in Cambodia, Lao PDR, and Viet Nam engaged protected area rangers, wildlife rescue centers, community members, and livestock and human health sector staff and laboratories. Surveillance activities detected outbreaks of H5N1 highly pathogenic avian influenza in wild birds, African swine fever in wild boar (Sus scrofa), Lumpy skin disease in banteng (Bos javanicus), and other endemic zoonotic pathogens identified as surveillance priorities by local stakeholders. In Cambodia and Lao PDR, national plans for wildlife disease surveillance are being signed into legislation. Cross-sectoral and trans-disciplinary approaches are needed to implement effective WHS systems. Long-term commitment, and paralleled implementation and policy development are key to sustainable WHS networks. WildHealthNet offers a roadmap to aid in the development of locally-relevant and locally-led WHS systems that support the global objectives of the World Organization for Animal Health's Wildlife Health Framework and other international agendas.
Assuntos
Febre Suína Africana , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Humanos , Animais , Bovinos , Suínos , Animais Selvagens , Sudeste Asiático/epidemiologiaRESUMO
Knowledge of the origin and reservoir of the coronavirus responsible for the ongoing COVID-19 pandemic is still fragmentary. To date, the closest relatives to SARS-CoV-2 have been detected in Rhinolophus bats sampled in the Yunnan province, China. Here we describe the identification of SARS-CoV-2 related coronaviruses in two Rhinolophus shameli bats sampled in Cambodia in 2010. Metagenomic sequencing identifies nearly identical viruses sharing 92.6% nucleotide identity with SARS-CoV-2. Most genomic regions are closely related to SARS-CoV-2, with the exception of a region of the spike, which is not compatible with human ACE2-mediated entry. The discovery of these viruses in a bat species not found in China indicates that SARS-CoV-2 related viruses have a much wider geographic distribution than previously reported, and suggests that Southeast Asia represents a key area to consider for future surveillance for coronaviruses.
Assuntos
COVID-19/virologia , Quirópteros/virologia , SARS-CoV-2/genética , Sequência de Aminoácidos , Animais , COVID-19/epidemiologia , COVID-19/metabolismo , Camboja/epidemiologia , Evolução Molecular , Genoma Viral , Filogenia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
African Swine Fever (ASF) is a highly contagious and fatal viral disease affecting both domestic and wild suids. The virus was introduced to Southeast Asia in early 2019 and has since spread rapidly throughout the region. Although significant efforts have been made to track and diagnose the disease in domestic pigs, very little is known about ASF in free-ranging wild boar and their potential role in maintaining the disease within Southeast Asia. Through a collaboration between government and non-government actors in Laos, Viet Nam, and Cambodia, investigations were conducted to (a) characterize the interface between domestic pigs and wild boar, (b) document risk factors for likely ASF spillover into wild boar populations by way of this interface, and (c) determine whether ASF in wild boar could be detected in each country. An extensive overlap between wild boar habitat and domestic pig ranging areas was found around villages bordering forests in all three countries, creating a high-risk interface for viral spillover between domestic pig and wild boar populations. Fifteen and three wild boar carcasses were detected through passive reporting in Laos and Viet Nam, respectively, in 2019 and early 2020. Four of five carcasses screened in Laos and two of three in Viet Nam were confirmed positive for African swine fever virus using real-time PCR. There were no confirmed reports of wild boar carcasses in Cambodia. This is the first confirmation of ASF in wild boar in Southeast Asia, the result of a probable viral spillover from domestic pigs, which highlights the importance of early reporting and monitoring of ASF in wild boar to enable the implementation of appropriate biosecurity measures.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos/virologia , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Camboja , Laos , Fatores de Risco , Sus scrofa/virologia , VietnãRESUMO
Astroviruses are known to infect humans and a wide range of animal species, and can cause gastroenteritis in their hosts. Recent studies have reported astroviruses in bats in Europe and in several locations in China. We sampled 1876 bats from 17 genera at 45 sites from 14 and 13 provinces in Cambodia and Lao PDR respectively, and tested them for astroviruses. Our study revealed a high diversity of astroviruses among various Yangochiroptera and Yinpterochiroptera bats. Evidence for varying degrees of host restriction for astroviruses in bats was found. Furthermore, additional Pteropodid hosts were detected. The astroviruses formed distinct phylogenetic clusters within the genus Mamastrovirus, most closely related to other known bat astroviruses. The astrovirus sequences were found to be highly saturated indicating that phylogenetic relationships should be interpreted carefully. An astrovirus clustering in a group with other viruses from diverse hosts, including from ungulates and porcupines, was found in a Rousettus bat. These findings suggest that diverse astroviruses can be found in many species of mammals, including bats.
Assuntos
Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Astroviridae/genética , Quirópteros/virologia , Variação Genética/genética , Animais , Astroviridae/classificação , Camboja , Fezes/virologia , Laos , Pulmão/virologia , Boca/virologia , Filogenia , Reto/virologiaRESUMO
South-East Asia is a hot spot for emerging zoonotic diseases, and bats have been recognized as hosts for a large number of zoonotic viruses such as Severe Acute Respiratory Syndrome (SARS), responsible for acute respiratory syndrome outbreaks. Thus, it is important to expand our knowledge of the presence of viruses in bats which could represent a risk to humans. Coronaviruses (CoVs) have been reported in bat species from Thailand, China, Indonesia, Taiwan and the Philippines. However no such work was conducted in Cambodia or Lao PDR. Between 2010 and 2013, 1965 bats were therefore sampled at interfaces with human populations in these two countries. They were tested for the presence of coronavirus by consensus reverse transcription-PCR assay. A total of 93 samples (4.7%) from 17 genera of bats tested positive. Sequence analysis revealed the presence of potentially 37 and 56 coronavirus belonging to alpha-coronavirus (αCoV) and beta-CoV (ßCoV), respectively. The ßCoVs group is known to include some coronaviruses highly pathogenic to human, such as SARS-CoV and MERS-CoV. All coronavirus sequences generated from frugivorous bats (family Pteropodidae) (n=55) clustered with other bat ßCoVs of lineage D, whereas one coronavirus from Pipistrellus coromandra fell in the lineage C of ßCoVs which also includes the MERS-CoV. αCoVs were all detected in various genera of insectivorous bats and clustered with diverse bat αCoV sequences previously published. A closely related strain of PEDV, responsible for severe diarrhea in pigs (PEDV-CoV), was detected in 2 Myotis bats. We highlighted the presence and the high diversity of coronaviruses circulating in bats from Cambodia and Lao PDR. Three new bat genera and species were newly identified as host of coronaviruses, namely Macroglossus sp., Megaerops niphanae and Myotis horsfieldii.