Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 617(7961): 629-636, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138085

RESUMO

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Assuntos
Oxigênio , Fotossíntese , Complexo de Proteína do Fotossistema II , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Água/química , Água/metabolismo , Manganês/química , Manganês/metabolismo , Cálcio/química , Cálcio/metabolismo , Peróxidos/metabolismo
3.
Nature ; 563(7731): 421-425, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30405241

RESUMO

Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok's S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3-7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok's cycle as high-resolution structures (2.04-2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional 'water', Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely.


Assuntos
Oxigênio/metabolismo , Fotossíntese , Água/química , Água/metabolismo , Cálcio/metabolismo , Cristalografia por Raios X , Cianobactérias/química , Lasers , Manganês/metabolismo , Modelos Moleculares , Oxirredução , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(1): 141-145, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848244

RESUMO

Knowledge of the manganese oxidation states of the oxygen-evolving Mn4CaO5 cluster in photosystem II (PSII) is crucial toward understanding the mechanism of biological water oxidation. There is a 4 decade long debate on this topic that historically originates from the observation of a multiline electron paramagnetic resonance (EPR) signal with effective total spin of S = 1/2 in the singly oxidized S2 state of this cluster. This signal implies an overall oxidation state of either Mn(III)3Mn(IV) or Mn(III)Mn(IV)3 for the S2 state. These 2 competing assignments are commonly known as "low oxidation (LO)" and "high oxidation (HO)" models of the Mn4CaO5 cluster. Recent advanced EPR and Mn K-edge X-ray spectroscopy studies converge upon the HO model. However, doubts about these assignments have been voiced, fueled especially by studies counting the number of flash-driven electron removals required for the assembly of an active Mn4CaO5 cluster starting from Mn(II) and Mn-free PSII. This process, known as photoactivation, appeared to support the LO model since the first oxygen is reported to evolve already after 7 flashes. In this study, we improved the quantum yield and sensitivity of the photoactivation experiment by employing PSII microcrystals that retained all protein subunits after complete manganese removal and by oxygen detection via a custom built thin-layer cell connected to a membrane inlet mass spectrometer. We demonstrate that 9 flashes by a nanosecond laser are required for the production of the first oxygen, which proves that the HO model provides the correct description of the Mn4CaO5 cluster's oxidation states.


Assuntos
Manganês/metabolismo , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Lasers , Luz , Compostos de Manganês , Modelos Químicos , Oxirredução , Óxidos , Complexo de Proteína do Fotossistema II/química , Thermosynechococcus , Água/química
5.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434915

RESUMO

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Hidrogênio/metabolismo , Magnésio/metabolismo , Oxirredução , Oxigênio/metabolismo , Fótons , Complexo de Proteína do Fotossistema II/química , Quinonas/metabolismo , Água/metabolismo
6.
Inorg Chem ; 61(24): 9104-9118, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35658429

RESUMO

The design of molecular water oxidation catalysts (WOCs) requires a rational approach that considers the intermediate steps of the catalytic cycle, including water binding, deprotonation, storage of oxidizing equivalents, O-O bond formation, and O2 release. We investigated several of these properties for a series of base metal complexes (M = Mn, Fe, Co, Ni) bearing two variants of a pentapyridyl ligand framework, of which some were reported previously to be active WOCs. We found that only [Fe(Py5OMe)Cl]+ (Py5OMe = pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane]) showed an appreciable catalytic activity with a turnover number (TON) = 130 in light-driven experiments using the [Ru(bpy)3]2+/S2O82- system at pH 8.0, but that activity is demonstrated to arise from the rapid degradation in the buffered solution leading to the formation of catalytically active amorphous iron oxide/hydroxide (FeOOH), which subsequently lost the catalytic activity by forming more extensive and structured FeOOH species. The detailed analysis of the redox and water-binding properties employing electrochemistry, X-ray absorption spectroscopy (XAS), UV-vis spectroscopy, and density-functional theory (DFT) showed that all complexes were able to undergo the MIII/MII oxidation, but none was able to yield a detectable amount of a MIV state in our potential window (up to +2 V vs SHE). This inability was traced to (i) the preference for binding Cl- or acetonitrile instead of water-derived species in the apical position, which excludes redox leveling via proton coupled electron transfer, and (ii) the lack of sigma donor ligands that would stabilize oxidation states beyond MIII. On that basis, design features for next-generation molecular WOCs are suggested.

7.
Nature ; 540(7633): 453-457, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27871088

RESUMO

Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O-O bond formation and O2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.


Assuntos
Cianobactérias/química , Elétrons , Lasers , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Temperatura , Amônia/química , Amônia/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalização , Manganês/metabolismo , Modelos Moleculares , Oxigênio/metabolismo , Especificidade por Substrato , Água/metabolismo
8.
J Synchrotron Radiat ; 26(Pt 5): 1716-1724, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490163

RESUMO

This work has demonstrated that X-ray absorption spectroscopy (XAS), both Mn XANES and EXAFS, of solutions with millimolar concentrations of metal is possible using the femtosecond X-ray pulses from XFELs. Mn XAS data were collected using two different sample delivery methods, a Rayleigh jet and a drop-on-demand setup, with varying concentrations of Mn. Here, a new method for normalization of XAS spectra based on solvent scattering that is compatible with data collection from a highly variable pulsed source is described. The measured XANES and EXAFS spectra of such dilute solution samples are in good agreement with data collected at synchrotron sources using traditional scanning protocols. The procedures described here will enable XFEL-based XAS on dilute biological samples, especially metalloproteins, with low sample consumption. Details of the experimental setup and data analysis methods used in this XANES and EXAFS study are presented. This method will also benefit XAS performed at high-repetition-rate XFELs such as the European XFEL, LCLS-II and LCLS-II-HE.

9.
Physiol Plant ; 166(1): 60-72, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30793319

RESUMO

In nature, an oxo-bridged Mn4 CaO5 cluster embedded in photosystem II (PSII), a membrane-bound multi-subunit pigment protein complex, catalyzes the water oxidation reaction that is driven by light-induced charge separations in the reaction center of PSII. The Mn4 CaO5 cluster accumulates four oxidizing equivalents to enable the four-electron four-proton catalysis of two water molecules to one dioxygen molecule and cycles through five intermediate S-states, S0  - S4 in the Kok cycle. One important question related to the catalytic mechanism of the oxygen-evolving complex (OEC) that remains is, whether structural isomers are present in some of the intermediate S-states and if such equilibria are essential for the mechanism of the O-O bond formation. Here we compare results from electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy (XAS) obtained at cryogenic temperatures for the S2 state of PSII with structural data collected of the S1 , S2 and S3 states by serial crystallography at neutral pH (∼6.5) using an X-ray free electron laser at room temperature. While the cryogenic data show the presence of at least two structural forms of the S2 state, the room temperature crystallography data can be well-described by just one S2 structure. We discuss the deviating results and outline experimental strategies for clarifying this mechanistically important question.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Cristalografia , Espectroscopia de Ressonância de Spin Eletrônica , Temperatura , Espectroscopia por Absorção de Raios X
10.
Biochim Biophys Acta ; 1837(10): 1821-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25107631

RESUMO

The photosynthetic reaction centre (RC) is central to the conversion of solar energy into chemical energy and is a model for bio-mimetic engineering approaches to this end. We describe bio-engineering of a Photosystem II (PSII) RC inspired peptide model, building on our earlier studies. A non-photosynthetic haem containing bacterioferritin (BFR) from Escherichia coli that expresses as a homodimer was used as a protein scaffold, incorporating redox-active cofactors mimicking those of PSII. Desirable properties include: a di-nuclear metal binding site which provides ligands for bivalent metals, a hydrophobic pocket at the dimer interface which can bind a photosensitive porphyrin and presence of tyrosine residues proximal to the bound cofactors, which can be utilised as efficient electron-tunnelling intermediates. Light-induced electron transfer from proximal tyrosine residues to the photo-oxidised ZnCe6(•+), in the modified BFR reconstituted with both ZnCe6 and Mn(II), is presented. Three site-specific tyrosine variants (Y25F, Y58F and Y45F) were made to localise the redox-active tyrosine in the engineered system. The results indicate that: presence of bound Mn(II) is necessary to observe tyrosine oxidation in all BFR variants; Y45 the most important tyrosine as an immediate electron donor to the oxidised ZnCe6(•+) and that Y25 and Y58 are both redox-active in this system, but appear to function interchangebaly. High-resolution (2.1Å) crystal structures of the tyrosine variants show that there are no mutation-induced effects on the overall 3-D structure of the protein. Small effects are observed in the Y45F variant. Here, the BFR-RC represents a protein model for artificial photosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Ferritinas/metabolismo , Modelos Moleculares , Fotossíntese , Engenharia de Proteínas , Tirosina/química , Proteínas de Bactérias/química , Sequência de Bases , Grupo dos Citocromos b/química , Primers do DNA , Espectroscopia de Ressonância de Spin Eletrônica , Ferritinas/química , Oxirredução , Fotoquímica , Reação em Cadeia da Polimerase
11.
J Synchrotron Radiat ; 22(6): 1475-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524313

RESUMO

High-accuracy transmission XAFS determined using the hybrid technique has been used to refine the geometries of bis(N-n-propyl-salicylaldiminato) nickel(II) (n-pr Ni) and bis(N-i-propyl-salicylaldiminato) nickel(II) (i-pr Ni) complexes which have approximately square planar and tetrahedral metal coordination. Multiple-scattering formalisms embedded in FEFF were used for XAFS modelling of the complexes. Here it is shown that an IFEFFIT-like package using weighting from experimental uncertainty converges to a well defined XAFS model. Structural refinement of (i-pr Ni) was found to yield a distorted tetrahedral geometry providing an excellent fit, χr(2) = 2.94. The structure of (n-pr Ni) is best modelled with a distorted square planar geometry, χr(2) = 3.27. This study demonstrates the insight that can be obtained from the propagation of uncertainty in XAFS analysis and the consequent confidence which can be obtained in hypothesis testing and in analysis of alternate structures ab initio. It also demonstrates the limitations of this (or any other) data set by defining the point at which signal becomes embedded in noise or amplified uncertainty, and hence can justify the use of a particular k-range for one data set or a different range for another. It is demonstrated that, with careful attention to data collection, including the correction of systematic errors with statistical analysis of uncertainty (the hybrid method), it is possible to obtain reliable structural information from dilute solutions using transmission XAFS data.

12.
J Synchrotron Radiat ; 22(4): 1008-21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134805

RESUMO

A new approach is introduced for determining X-ray absorption spectroscopy (XAS) spectra on absolute and relative scales using multiple solutions with different concentrations by the characterization and correction of experimental systematics. This hybrid technique is a development of standard X-ray absorption fine structure (XAFS) along the lines of the high-accuracy X-ray extended range technique (XERT) but with applicability to solutions, dilute systems and cold cell environments. This methodology has been applied to determining absolute XAS of bis(N-n-propyl-salicylaldiminato) nickel(II) and bis(N-i-propyl-salicylaldiminato) nickel(II) complexes with square planar and tetrahedral structures in 15 mM and 1.5 mM dilute solutions. It is demonstrated that transmission XAS from dilute systems can provide excellent X-ray absorption near-edge structure (XANES) and XAFS spectra, and that transmission measurements can provide accurate measurement of subtle differences including coordination geometries. For the first time, (transmission) XAS of the isomers have been determined from low-concentration solutions on an absolute scale with a 1-5% accuracy, and with relative precision of 0.1% to 0.2% in the active XANES and XAFS regions after inclusion of systematic corrections.

13.
Anal Chem ; 86(10): 5171-8, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24786640

RESUMO

The reduction chemistry of molecular oxygen underpins the energy metabolism of multicellular organisms, liberating free energy needed to catalyze a plethora of enzymatic reactions. Measuring the isotope signatures of (16)O and (18)O during O2 reduction can provide insights into both kinetic and equilibrium isotope effects. However, current methods to measure O2 isotope signatures are time-consuming and disruptive. This paper describes the application of membrane inlet mass spectrometry to determine the oxygen isotope discrimination of a range of O2-consuming reactions, providing a rapid and convenient method for determining these values. A survey of oxygenase and oxidase reactions provides new insights into previously uncharacterized amino acid oxidase enzymes. Liquid and gas phase measurements show the ease of assays using this approach for purified enzymes, biological extracts and intact tissues.


Assuntos
Oxirredutases/química , Consumo de Oxigênio/fisiologia , Isótopos de Oxigênio/química , Radioisótopos de Oxigênio/química , Espectrometria de Massas , Membranas Artificiais , Mitocôndrias/química , Mitocôndrias/enzimologia , Sistemas On-Line , Oxigenases/química
14.
Sci Rep ; 14(1): 4258, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383697

RESUMO

Graphite electrodes offer remarkable electrochemical properties, emerging as a viable alternative to glassy carbon (GCE) and other carbon-based electrodes for fundamental electrochemistry research. We report the fabrication and characterization of high-purity graphite disk electrodes (GDEs), made from cost-effective materials and a solvent-free methodology employing readily available laboratory equipment. Analysis of their physical properties via SEM, EDX and XPS reveals no metallic interferences and a notably high porosity, emphasizing their potential. The electrochemical performances of GDEs were found to be comparable to those of GCE. Immobilization of peptides and enzymes, both via covalent coupling and surface adsorption, was used to explore potential applications of GDEs in bioelectrochemistry. Enzyme activity could be addressed both via direct electron transfer and mediated electron transfer mechanism. These results highlight the interesting properties of our GDEs and make them a low-cost alternative to other carbon-based electrodes, with potential for future real-world applications.

15.
FEBS Lett ; 597(1): 30-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310373

RESUMO

Ever since the discovery that Mn was required for oxygen evolution in plants by Pirson in 1937 and the period-four oscillation in flash-induced oxygen evolution by Joliot and Kok in the 1970s, understanding of this process has advanced enormously using state-of-the-art methods. The most recent in this series of innovative techniques was the introduction of X-ray free-electron lasers (XFELs) a decade ago, which led to another quantum leap in the understanding in this field, by enabling operando X-ray structural and X-ray spectroscopy studies at room temperature. This review summarizes the current understanding of the structure of Photosystem II (PS II) and its catalytic centre, the Mn4 CaO5 complex, in the intermediate Si (i = 0-4)-states of the Kok cycle, obtained using XFELs.


Assuntos
Fotossíntese , Água , Água/química , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Lasers , Oxigênio/química
16.
IUCrJ ; 10(Pt 6): 642-655, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870936

RESUMO

The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.

17.
Dalton Trans ; 51(12): 4634-4643, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35212328

RESUMO

Sustainable sources of hydrogen are a vital component of the envisioned energy transition. Understanding and mimicking the [FeFe]-hydrogenase provides a route to achieving this goal. In this study we re-visit a molecular mimic of the hydrogenase, the propyl dithiolate bridged complex [Fe2(µ-pdt)(CO)4(CN)2]2-, in which the cyanide ligands are tuned via Lewis acid interactions. This system provides a rare example of a cyanide containing [FeFe]-hydrogenase mimic capable of catalytic proton reduction, as demonstrated by cyclic voltammetry. EPR, FTIR, UV-vis and X-ray absorption spectroscopy are employed to characterize the species produced by protonation, and reduction or oxidation of the complex. The results reveal that biologically relevant iron-oxidation states can be generated, potentially including short-lived mixed valent Fe(I)Fe(II) species. We propose that catalysis is initiated by protonation of the diiron complex and the resulting di-ferrous bridging hydride species can subsequently follow two different pathways to promote H2 gas formation depending on the applied reduction potential.

18.
Elife ; 112022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083619

RESUMO

Redox reactions are central to biochemistry and are both controlled by and induce protein structural changes. Here, we describe structural rearrangements and crosstalk within the Bacillus cereus ribonucleotide reductase R2b-NrdI complex, a di-metal carboxylate-flavoprotein system, as part of the mechanism generating the essential catalytic free radical of the enzyme. Femtosecond crystallography at an X-ray free electron laser was utilized to obtain structures at room temperature in defined redox states without suffering photoreduction. Together with density functional theory calculations, we show that the flavin is under steric strain in the R2b-NrdI protein complex, likely tuning its redox properties to promote superoxide generation. Moreover, a binding site in close vicinity to the expected flavin O2 interaction site is observed to be controlled by the redox state of the flavin and linked to the channel proposed to funnel the produced superoxide species from NrdI to the di-manganese site in protein R2b. These specific features are coupled to further structural changes around the R2b-NrdI interaction surface. The mechanistic implications for the control of reactive oxygen species and radical generation in protein R2b are discussed.


Assuntos
Ribonucleotídeo Redutases , Cristalografia por Raios X , Flavinas/metabolismo , Oxirredução , Ribonucleotídeo Redutases/química , Superóxidos
19.
Environ Sci Technol ; 45(17): 7249-57, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21793501

RESUMO

Despite its pivotal role in determining the risks and time frames associated with contaminant release, metal speciation remains a poorly understood aspect of biosolids chemistry. The work reported here used synchrotron-based spectroscopy techniques to investigate the speciation of copper and zinc in a range of Australian biosolids. High resolution element mapping of biosolids samples using micro X-ray fluorescence spectroscopy revealed considerable heterogeneity in key element associations, and a combination of both organic and inorganic copper and zinc binding environments. Linear combination fitting of K-edge X-ray absorption spectra indicated consistent differences in metal speciation between freshly produced and stockpiled biosolids. While sulfide minerals play a dominant role in metal binding in freshly dewatered biosolids, they are of lesser importance in dried biosolids that have been stockpiled. A degree of metal binding with iron oxide minerals was apparent but the results did not support the hypothesis that biosolids metals are chiefly associated with iron minerals. This work has potential implications for the long-term stability of metals in biosolids and their eventual fate following land application.


Assuntos
Cobre/análise , Esgotos/química , Poluentes do Solo/análise , Espectrometria por Raios X/métodos , Espectroscopia por Absorção de Raios X/métodos , Zinco/análise , Austrália
20.
Sci Rep ; 11(1): 23058, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845249

RESUMO

We report the electrochemical oxidation of ferricyanide, [FeIII(CN)6]3- and characterised the oxidation product by in-situ FTIR and XAS spectroelectrochemistry methods. Oxidation of [FeIII(CN)6]3- is proposed to proceed via a tentative Fe(IV) intermediate that undergoes reduction elimination to give cis-[FeIII(CN)4(CH3CN)2]1- as stable product in acetonitrile. Speciation of the oxidation product by DFT calculations is underpinned by good agreement to experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA