Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cochrane Database Syst Rev ; 2: CD011080, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28197998

RESUMO

BACKGROUND: Near-sightedness, or myopia, is a condition in which light rays entering the eye along the visual axis focus in front of the retina, resulting in blurred vision. Myopia can be treated with spectacles, contact lenses, or refractive surgery. Options for refractive surgery include laser-assisted subepithelial keratectomy (LASEK) and laser-assisted in-situ keratomileusis (LASIK). Both procedures utilize a laser to shape the corneal tissue (front of the eye) to correct refractive error, and both create flaps before laser treatment of corneal stromal tissue. Whereas the flap in LASEK is more superficial and epithelial, in LASIK it is thicker and also includes some anterior stromal tissue. LASEK is considered a surface ablation procedure, much like its predecessor, photorefractive keratectomy (PRK). LASEK was developed as an alternative to PRK to address the issue of pain associated with epithelial debridement used for PRK. Assessing the relative benefits and risks/side effects of LASEK and LASIK warrants a systematic review. OBJECTIVES: To assess the effects of LASEK versus LASIK for correcting myopia. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), which contains the Cochrane Eyes and Vision Trials Register (2016, Issue 10); MEDLINE Ovid (1946 to 24 October 2016); Embase.com (1947 to 24 October 2016); PubMed (1948 to 24 October 2016); LILACS (Latin American and Caribbean Health Sciences Literature Database; 1982 to 24 October 2016); the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), last searched 20 June 2014; ClinicalTrials.gov (www.clinicaltrials.gov); searched 24 October 2016; and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en); searched 24 October 2016. We did not use any date or language restrictions in the electronic searches for trials. SELECTION CRITERIA: We considered only randomized controlled trials (RCTs) for the purposes of this review. Eligible RCTs were those in which myopic participants were assigned randomly to receive either LASEK or LASIK in one or both eyes. We also included paired-eye studies in which investigators randomly selected which of the participant's eyes would receive LASEK or LASIK and assigned the other eye to the other procedure. Participants were men or women between the ages of 18 and 60 years with myopia up to 12 diopters (D) and/or myopic astigmatism of severity up to 3 D, who did not have a history of prior refractive surgery. DATA COLLECTION AND ANALYSIS: Two review authors independently screened all reports and assessed the risk of bias in trials included in this review. We extracted data and summarized findings using risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes. In the absence of clinical and methodological heterogeneity across trials, we used a random-effects model to calculate summary effect estimates. We used a fixed-effect model when including fewer than three trials in a meta-analysis. When clinical, methodological, or statistical heterogeneity was observed across trials, we reported our findings in a narrative synthesis. MAIN RESULTS: We identified four eligible trials with 538 eyes of 392 participants for the review, but only three trials (154 participants) provided outcome data for analysis. We found no ongoing trials. Two of four trials were from China, one trial was from Turkey, and the location of one trial was not reported. The risk of bias for most domains was unclear due to poor reporting of trial methods; no trial had a protocol or trial registry record. Three trials enrolled participants with mild to moderate myopia (less than -6.50 D); one trial included only participants with severe myopia (more than -6.00 D).The evidence showed uncertainty in whether there is a difference between LASEK and LASIK in uncorrected visual acuity (UCVA) at 12 months, the primary outcome in our review. The RR and 95% confidence interval (CI) at 12 months after surgery was 0.96 (95% CI 0.82 to 1.13) for UCVA of 20/20 or better and 0.90 (95% CI 0.67 to 1.21) for UCVA of 20/40 or better based on data from one trial with 57 eyes (very low-certainty evidence). People receiving LASEK were less likely to achieve a refractive error within 0.5 diopters of the target at 12 months follow-up (RR 0.69, 95% CI 0.48 to 0.99; 57 eyes; very low-certainty evidence). One trial reported mild corneal haze at six months in one eye in the LASEK group and none in the LASIK group (RR 2.11, 95% CI 0.57 to 7.82; 76 eyes; very low-certainty evidence). None of the included trials reported postoperative pain score or loss of visual acuity, spherical equivalent of the refractive error, or quality of life at 12 months.Refractive regression, an adverse event, was reported only in the LASEK group (8 of 37 eyes) compared with none of 39 eyes in the LASIK group in one trial (low-certainty evidence). Other adverse events, such as corneal flap striae and refractive over-correction, were reported only in the LASIK group (5 of 39 eyes) compared with none of 37 eyes in the LASEK group in one trial (low-certainty evidence). AUTHORS' CONCLUSIONS: Overall, from the available RCTs, there is uncertainty in how LASEK compares with LASIK in achieving better refractive and visual results in mildly to moderately myopic participants. Large, well-designed RCTs would be required to estimate the magnitude of any difference in efficacy or adverse effects between LASEK and LASIK for treating myopia or myopic astigmatism.


Assuntos
Ceratectomia Subepitelial Assistida por Laser/métodos , Ceratomileuse Assistida por Excimer Laser In Situ/métodos , Miopia/cirurgia , Adulto , Feminino , Humanos , Ceratectomia Subepitelial Assistida por Laser/efeitos adversos , Ceratomileuse Assistida por Excimer Laser In Situ/efeitos adversos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Acuidade Visual
2.
Curr Opin Ophthalmol ; 23(4): 251-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22569468

RESUMO

PURPOSE OF REVIEW: To describe the development and uses of corneal collagen crosslinking (CXL) in association with keratorefractive procedures as well as in the treatment of progressive keratoconus and progressive postlaser in-situ keratomileusis (post-LASIK) keratectasia. RECENT FINDINGS: CXL has been shown to be effective in slowing, halting or reversing progressive ectasia in both keratoconus and progressive post-LASIK keratectasia by means of corneal stiffening. Thus, it is the only treatment option currently available that addresses the underlying progression of ectactic conditions. Combining CXL with keratorefractive procedures, such as intrastromal corneal ring segment implantation and photorefractive keratectomy, is a promising therapeutic alternative to penetrating keratoplasty or lamellar keratoplasty that in many cases can improve visual acuity, stabilize ectasia, and delay or even prevent the need for more invasive procedures. SUMMARY: The stiffening effect of CXL has made it a promising alternative in the ophthalmologist's armamentarium for treatment of progressive keratoconus and progressive post-LASIK keratectasia. Future studies are needed to determine the long-term stability of CXL, as well as to address possible complications.


Assuntos
Colágeno/metabolismo , Substância Própria/metabolismo , Reagentes de Ligações Cruzadas/uso terapêutico , Ceratocone/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Procedimentos Cirúrgicos Refrativos/efeitos adversos , Dilatação Patológica/tratamento farmacológico , Dilatação Patológica/etiologia , Humanos , Riboflavina/uso terapêutico , Raios Ultravioleta , Acuidade Visual/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-26886120

RESUMO

Glaucoma comprises a group of progressive, neurodegenerative disorders characterized by retinal ganglion cell death and nerve fiber layer atrophy. Several randomized controlled trials have consistently demonstrated the efficacy of intraocular pressure lowering to slow or halt the measurable progression of the disease. Medical therapy, in places where it is easily accessible, is often the primary method to lower intraocular pressure. We review the medical options currently available and possible future options currently in development. The 5 contemporary classes of topical agents in use include prostaglandin analogs, beta blockers, carbonic anhydrase inhibitors, alpha agonists, and cholinergics. In addition, several fixed combination agents are commercially available. Agents from each of these classes have unique mechanisms of action, adverse effects, and other characteristics that impact how they are used in clinical practice. Despite the plethora of medical options available, there are limitations to topical ophthalmic therapy such as the high rate of noncompliance and local and systemic adverse effects. Alternate and sustained drug delivery models, such as injectable agents and punctal plug delivery systems, may in the future alleviate some such concerns and lead to increased efficacy of treatment while minimizing adverse effects.


Assuntos
Anti-Hipertensivos/uso terapêutico , Glaucoma de Ângulo Aberto/tratamento farmacológico , Agonistas alfa-Adrenérgicos/uso terapêutico , Antagonistas Adrenérgicos beta/uso terapêutico , Anti-Hipertensivos/administração & dosagem , Inibidores da Anidrase Carbônica/uso terapêutico , Colinérgicos/uso terapêutico , Ensaios Clínicos como Assunto , Quimioterapia Combinada , Humanos , Prostaglandinas Sintéticas/uso terapêutico
4.
Middle East Afr J Ophthalmol ; 22(1): 10-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25624668

RESUMO

To summarize the role of cataract surgery in the glaucoma patient, in terms of the effect on intraocular pressure (IOP) as well as diagnostic and therapeutic considerations for those with both conditions. Recent evidence suggests that cataract extraction may produce a significant and sustained IOP reduction in individuals with open-angle glaucoma, ocular hypertension, and angle-closure glaucoma. Cataract removal may improve the practitioner's ability to interpret perimetric testing, and re-establishing perimetric and optic nerve imaging baselines is recommended after cataract surgery. The sequence of cataract surgery relative to glaucoma surgery impacts the likelihood of complications and surgical success. There are multiple benefits to perform cataract surgery prior to glaucoma surgery while cataract surgery after trabeculectomy increases the risk of subsequent filtration failure. As "minimally invasive glaucoma surgeries" continue to improve in terms of efficacy, there is an evolving role for combined cataract and glaucoma surgery in patients with early to moderate stages of glaucoma.


Assuntos
Extração de Catarata , Glaucoma de Ângulo Fechado/fisiopatologia , Glaucoma de Ângulo Aberto/fisiopatologia , Pressão Intraocular/fisiologia , Catarata/complicações , Feminino , Humanos , Hipertensão Ocular/fisiopatologia , Tonometria Ocular , Testes de Campo Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA